Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952204953> ?p ?o ?g. }
- W2952204953 abstract "Correspondence analysis (CA) is a multivariate statistical tool used to visualize and interpret data dependencies. CA has found applications in fields ranging from epidemiology to social sciences. However, current methods used to perform CA do not scale to large, high-dimensional datasets. By re-interpreting the objective in CA using an information-theoretic tool called the principal inertia components, we demonstrate that performing CA is equivalent to solving a functional optimization problem over the space of finite variance functions of two random variable. We show that this optimization problem, in turn, can be efficiently approximated by neural networks. The resulting formulation, called the correspondence analysis neural network (CA-NN), enables CA to be performed at an unprecedented scale. We validate the CA-NN on synthetic data, and demonstrate how it can be used to perform CA on a variety of datasets, including food recipes, wine compositions, and images. Our results outperform traditional methods used in CA, indicating that CA-NN can serve as a new, scalable tool for interpretability and visualization of complex dependencies between random variables." @default.
- W2952204953 created "2019-06-27" @default.
- W2952204953 creator A5074697940 @default.
- W2952204953 creator A5082153975 @default.
- W2952204953 creator A5086525718 @default.
- W2952204953 date "2019-02-21" @default.
- W2952204953 modified "2023-09-23" @default.
- W2952204953 title "Correspondence Analysis Using Neural Networks" @default.
- W2952204953 cites W1518671722 @default.
- W2952204953 cites W1883346539 @default.
- W2952204953 cites W1891181203 @default.
- W2952204953 cites W1967557690 @default.
- W2952204953 cites W1984446590 @default.
- W2952204953 cites W1995228946 @default.
- W2952204953 cites W2018582985 @default.
- W2952204953 cites W2025341678 @default.
- W2952204953 cites W2026997945 @default.
- W2952204953 cites W2030748132 @default.
- W2952204953 cites W2052696562 @default.
- W2952204953 cites W2056532343 @default.
- W2952204953 cites W2059187041 @default.
- W2952204953 cites W2099111195 @default.
- W2952204953 cites W2103914106 @default.
- W2952204953 cites W2107327484 @default.
- W2952204953 cites W2112796928 @default.
- W2952204953 cites W2118795819 @default.
- W2952204953 cites W2143017621 @default.
- W2952204953 cites W2170862660 @default.
- W2952204953 cites W2418308705 @default.
- W2952204953 cites W2461625475 @default.
- W2952204953 cites W2569859441 @default.
- W2952204953 cites W2594379800 @default.
- W2952204953 cites W2610857016 @default.
- W2952204953 cites W2611269208 @default.
- W2952204953 cites W2742980034 @default.
- W2952204953 cites W2963174850 @default.
- W2952204953 cites W2964121744 @default.
- W2952204953 cites W3118608800 @default.
- W2952204953 cites W771469340 @default.
- W2952204953 hasPublicationYear "2019" @default.
- W2952204953 type Work @default.
- W2952204953 sameAs 2952204953 @default.
- W2952204953 citedByCount "0" @default.
- W2952204953 crossrefType "posted-content" @default.
- W2952204953 hasAuthorship W2952204953A5074697940 @default.
- W2952204953 hasAuthorship W2952204953A5082153975 @default.
- W2952204953 hasAuthorship W2952204953A5086525718 @default.
- W2952204953 hasConcept C11413529 @default.
- W2952204953 hasConcept C115051666 @default.
- W2952204953 hasConcept C119857082 @default.
- W2952204953 hasConcept C124101348 @default.
- W2952204953 hasConcept C137836250 @default.
- W2952204953 hasConcept C148298330 @default.
- W2952204953 hasConcept C153180895 @default.
- W2952204953 hasConcept C154945302 @default.
- W2952204953 hasConcept C27438332 @default.
- W2952204953 hasConcept C2781067378 @default.
- W2952204953 hasConcept C36464697 @default.
- W2952204953 hasConcept C41008148 @default.
- W2952204953 hasConcept C48044578 @default.
- W2952204953 hasConcept C50644808 @default.
- W2952204953 hasConcept C76155785 @default.
- W2952204953 hasConcept C77088390 @default.
- W2952204953 hasConceptScore W2952204953C11413529 @default.
- W2952204953 hasConceptScore W2952204953C115051666 @default.
- W2952204953 hasConceptScore W2952204953C119857082 @default.
- W2952204953 hasConceptScore W2952204953C124101348 @default.
- W2952204953 hasConceptScore W2952204953C137836250 @default.
- W2952204953 hasConceptScore W2952204953C148298330 @default.
- W2952204953 hasConceptScore W2952204953C153180895 @default.
- W2952204953 hasConceptScore W2952204953C154945302 @default.
- W2952204953 hasConceptScore W2952204953C27438332 @default.
- W2952204953 hasConceptScore W2952204953C2781067378 @default.
- W2952204953 hasConceptScore W2952204953C36464697 @default.
- W2952204953 hasConceptScore W2952204953C41008148 @default.
- W2952204953 hasConceptScore W2952204953C48044578 @default.
- W2952204953 hasConceptScore W2952204953C50644808 @default.
- W2952204953 hasConceptScore W2952204953C76155785 @default.
- W2952204953 hasConceptScore W2952204953C77088390 @default.
- W2952204953 hasOpenAccess W2952204953 @default.
- W2952204953 hasRelatedWork W2099741464 @default.
- W2952204953 hasRelatedWork W2161847264 @default.
- W2952204953 hasRelatedWork W2616267373 @default.
- W2952204953 hasRelatedWork W2762388482 @default.
- W2952204953 hasRelatedWork W2765174219 @default.
- W2952204953 hasRelatedWork W2810222157 @default.
- W2952204953 hasRelatedWork W2891885275 @default.
- W2952204953 hasRelatedWork W2917214933 @default.
- W2952204953 hasRelatedWork W2946423444 @default.
- W2952204953 hasRelatedWork W2946501903 @default.
- W2952204953 hasRelatedWork W2952160759 @default.
- W2952204953 hasRelatedWork W3006514345 @default.
- W2952204953 hasRelatedWork W3014521881 @default.
- W2952204953 hasRelatedWork W3014889209 @default.
- W2952204953 hasRelatedWork W3030693560 @default.
- W2952204953 hasRelatedWork W3103013643 @default.
- W2952204953 hasRelatedWork W3153837358 @default.
- W2952204953 hasRelatedWork W3184282408 @default.
- W2952204953 hasRelatedWork W3197480225 @default.
- W2952204953 hasRelatedWork W3197615996 @default.