Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952286916> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2952286916 endingPage "116095" @default.
- W2952286916 startingPage "116095" @default.
- W2952286916 abstract "Graph kernels are powerful tools to bridge the gap between machine learning and data encoded as graphs. Most graph kernels are based on the decomposition of graphs into a set of patterns. The similarity between two graphs is then deduced to the similarity between corresponding patterns. Kernels based on linear patterns constitute a good trade-off between accuracy and computational complexity. In this work, we propose a thorough investigation and comparison of graph kernels based on different linear patterns, namely walks and paths. First, all these kernels are explored in detail, including their mathematical foundations, structures of patterns and computational complexity. After that, experiments are performed on various benchmark datasets exhibiting different types of graphs, including labeled and unlabeled graphs, graphs with different numbers of vertices, graphs with different average vertex degrees, linear and non-linear graphs. Finally, for regression and classification tasks, accuracy and computational complexity of these kernels are compared and analyzed, in the light of baseline kernels based on non-linear patterns. Suggestions are proposed to choose kernels according to the types of graph datasets. This work leads to a clear comparison of strengths and weaknesses of these kernels. An open-source Python library containing an implementation of all discussed kernels is publicly available on GitHub to the community, thus allowing to promote and facilitate the use of graph kernels in machine learning problems." @default.
- W2952286916 created "2019-06-27" @default.
- W2952286916 creator A5016571081 @default.
- W2952286916 creator A5035508881 @default.
- W2952286916 creator A5074267243 @default.
- W2952286916 date "2022-03-01" @default.
- W2952286916 modified "2023-10-14" @default.
- W2952286916 title "Graph kernels based on linear patterns: Theoretical and experimental comparisons" @default.
- W2952286916 cites W1816257748 @default.
- W2952286916 cites W1973848216 @default.
- W2952286916 cites W1977474673 @default.
- W2952286916 cites W2007572995 @default.
- W2952286916 cites W2030339748 @default.
- W2952286916 cites W2047871891 @default.
- W2952286916 cites W2048532382 @default.
- W2952286916 cites W2056562706 @default.
- W2952286916 cites W2058413069 @default.
- W2952286916 cites W2081301924 @default.
- W2952286916 cites W2092750499 @default.
- W2952286916 cites W2099438806 @default.
- W2952286916 cites W2109294083 @default.
- W2952286916 cites W2144000913 @default.
- W2952286916 cites W2155682761 @default.
- W2952286916 cites W2169528473 @default.
- W2952286916 cites W2337480916 @default.
- W2952286916 cites W2519754777 @default.
- W2952286916 cites W2771949901 @default.
- W2952286916 cites W2924009715 @default.
- W2952286916 cites W2943430238 @default.
- W2952286916 cites W2988782392 @default.
- W2952286916 cites W3144386677 @default.
- W2952286916 cites W4376848346 @default.
- W2952286916 doi "https://doi.org/10.1016/j.eswa.2021.116095" @default.
- W2952286916 hasPublicationYear "2022" @default.
- W2952286916 type Work @default.
- W2952286916 sameAs 2952286916 @default.
- W2952286916 citedByCount "4" @default.
- W2952286916 countsByYear W29522869162022 @default.
- W2952286916 countsByYear W29522869162023 @default.
- W2952286916 crossrefType "journal-article" @default.
- W2952286916 hasAuthorship W2952286916A5016571081 @default.
- W2952286916 hasAuthorship W2952286916A5035508881 @default.
- W2952286916 hasAuthorship W2952286916A5074267243 @default.
- W2952286916 hasBestOaLocation W29522869161 @default.
- W2952286916 hasConcept C11413529 @default.
- W2952286916 hasConcept C132525143 @default.
- W2952286916 hasConcept C41008148 @default.
- W2952286916 hasConcept C80444323 @default.
- W2952286916 hasConceptScore W2952286916C11413529 @default.
- W2952286916 hasConceptScore W2952286916C132525143 @default.
- W2952286916 hasConceptScore W2952286916C41008148 @default.
- W2952286916 hasConceptScore W2952286916C80444323 @default.
- W2952286916 hasFunder F4320320883 @default.
- W2952286916 hasFunder F4320322725 @default.
- W2952286916 hasLocation W29522869161 @default.
- W2952286916 hasLocation W29522869162 @default.
- W2952286916 hasLocation W29522869163 @default.
- W2952286916 hasLocation W29522869164 @default.
- W2952286916 hasLocation W29522869165 @default.
- W2952286916 hasOpenAccess W2952286916 @default.
- W2952286916 hasPrimaryLocation W29522869161 @default.
- W2952286916 hasRelatedWork W2386767533 @default.
- W2952286916 hasRelatedWork W2391817034 @default.
- W2952286916 hasRelatedWork W2950905235 @default.
- W2952286916 hasRelatedWork W2952964201 @default.
- W2952286916 hasRelatedWork W3035116611 @default.
- W2952286916 hasRelatedWork W3086197249 @default.
- W2952286916 hasRelatedWork W3093410149 @default.
- W2952286916 hasRelatedWork W4287763734 @default.
- W2952286916 hasRelatedWork W4317655900 @default.
- W2952286916 hasRelatedWork W4367684998 @default.
- W2952286916 hasVolume "189" @default.
- W2952286916 isParatext "false" @default.
- W2952286916 isRetracted "false" @default.
- W2952286916 magId "2952286916" @default.
- W2952286916 workType "article" @default.