Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952287951> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2952287951 endingPage "14" @default.
- W2952287951 startingPage "1" @default.
- W2952287951 abstract "Fourth Industrial Revolution technologies, such as artificial intelligence, big data, the Internet of Things (IoT), and virtual reality, have disrupted legacy methods of operations and have led to progress in many industries worldwide. These technologies also affect the cultural and national heritage. IoT generates large volumes of streaming data; therefore, advanced data analytics using big data analytics and artificial neural networks is an important research topic. In this study, IoT sensor data was collected at the restored Woljeong Bridge, which was originally built in the eighth century, or AD 760, during the Silla Dynasty (57 BC--AD 935) in South Korea. We empirically evaluate a recurrent neural network with recurrent units, including a long short-term memory (LSTM) unit and a gated recurrent unit (GRU). Additionally, we evaluate hybrid deep-learning models (convolution neural networks [CNN]-LSTM and CNN-GRU) to build a prediction model, facilitating the preventive conservation of an invaluable cultural and national heritage site. The experimental results show that the LSTM unit is an effective and robust model. When comparing the hybrid models (i.e., the joint CNN-LSTM and CNN-GRU architectures), we found that the vanilla LSTM and GRU models had superior time-series prediction capabilities." @default.
- W2952287951 created "2019-06-27" @default.
- W2952287951 creator A5045246487 @default.
- W2952287951 creator A5065309573 @default.
- W2952287951 date "2019-06-13" @default.
- W2952287951 modified "2023-09-27" @default.
- W2952287951 title "Cultural Heritage and the Intelligent Internet of Things" @default.
- W2952287951 cites W114517082 @default.
- W2952287951 cites W1967308080 @default.
- W2952287951 cites W2004353783 @default.
- W2952287951 cites W2062087947 @default.
- W2952287951 cites W2064675550 @default.
- W2952287951 cites W2119057597 @default.
- W2952287951 cites W2521606069 @default.
- W2952287951 cites W2738473856 @default.
- W2952287951 cites W2769851728 @default.
- W2952287951 cites W2786884683 @default.
- W2952287951 cites W4246555007 @default.
- W2952287951 doi "https://doi.org/10.1145/3316414" @default.
- W2952287951 hasPublicationYear "2019" @default.
- W2952287951 type Work @default.
- W2952287951 sameAs 2952287951 @default.
- W2952287951 citedByCount "16" @default.
- W2952287951 countsByYear W29522879512020 @default.
- W2952287951 countsByYear W29522879512021 @default.
- W2952287951 countsByYear W29522879512022 @default.
- W2952287951 countsByYear W29522879512023 @default.
- W2952287951 crossrefType "journal-article" @default.
- W2952287951 hasAuthorship W2952287951A5045246487 @default.
- W2952287951 hasAuthorship W2952287951A5065309573 @default.
- W2952287951 hasConcept C100776233 @default.
- W2952287951 hasConcept C108583219 @default.
- W2952287951 hasConcept C119857082 @default.
- W2952287951 hasConcept C124101348 @default.
- W2952287951 hasConcept C126322002 @default.
- W2952287951 hasConcept C136764020 @default.
- W2952287951 hasConcept C147168706 @default.
- W2952287951 hasConcept C154945302 @default.
- W2952287951 hasConcept C166957645 @default.
- W2952287951 hasConcept C205649164 @default.
- W2952287951 hasConcept C2522767166 @default.
- W2952287951 hasConcept C41008148 @default.
- W2952287951 hasConcept C50644808 @default.
- W2952287951 hasConcept C60671577 @default.
- W2952287951 hasConcept C67186912 @default.
- W2952287951 hasConcept C71924100 @default.
- W2952287951 hasConcept C75684735 @default.
- W2952287951 hasConcept C77088390 @default.
- W2952287951 hasConcept C79158427 @default.
- W2952287951 hasConcept C81363708 @default.
- W2952287951 hasConcept C81860439 @default.
- W2952287951 hasConceptScore W2952287951C100776233 @default.
- W2952287951 hasConceptScore W2952287951C108583219 @default.
- W2952287951 hasConceptScore W2952287951C119857082 @default.
- W2952287951 hasConceptScore W2952287951C124101348 @default.
- W2952287951 hasConceptScore W2952287951C126322002 @default.
- W2952287951 hasConceptScore W2952287951C136764020 @default.
- W2952287951 hasConceptScore W2952287951C147168706 @default.
- W2952287951 hasConceptScore W2952287951C154945302 @default.
- W2952287951 hasConceptScore W2952287951C166957645 @default.
- W2952287951 hasConceptScore W2952287951C205649164 @default.
- W2952287951 hasConceptScore W2952287951C2522767166 @default.
- W2952287951 hasConceptScore W2952287951C41008148 @default.
- W2952287951 hasConceptScore W2952287951C50644808 @default.
- W2952287951 hasConceptScore W2952287951C60671577 @default.
- W2952287951 hasConceptScore W2952287951C67186912 @default.
- W2952287951 hasConceptScore W2952287951C71924100 @default.
- W2952287951 hasConceptScore W2952287951C75684735 @default.
- W2952287951 hasConceptScore W2952287951C77088390 @default.
- W2952287951 hasConceptScore W2952287951C79158427 @default.
- W2952287951 hasConceptScore W2952287951C81363708 @default.
- W2952287951 hasConceptScore W2952287951C81860439 @default.
- W2952287951 hasIssue "3" @default.
- W2952287951 hasLocation W29522879511 @default.
- W2952287951 hasOpenAccess W2952287951 @default.
- W2952287951 hasPrimaryLocation W29522879511 @default.
- W2952287951 hasRelatedWork W2337926734 @default.
- W2952287951 hasRelatedWork W2793022090 @default.
- W2952287951 hasRelatedWork W3014300295 @default.
- W2952287951 hasRelatedWork W3212371498 @default.
- W2952287951 hasRelatedWork W4200181268 @default.
- W2952287951 hasRelatedWork W4293226363 @default.
- W2952287951 hasRelatedWork W4297495548 @default.
- W2952287951 hasRelatedWork W4311257506 @default.
- W2952287951 hasRelatedWork W4320802194 @default.
- W2952287951 hasRelatedWork W4366224123 @default.
- W2952287951 hasVolume "12" @default.
- W2952287951 isParatext "false" @default.
- W2952287951 isRetracted "false" @default.
- W2952287951 magId "2952287951" @default.
- W2952287951 workType "article" @default.