Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952302585> ?p ?o ?g. }
- W2952302585 endingPage "4211" @default.
- W2952302585 startingPage "4197" @default.
- W2952302585 abstract "This paper concerns the deployment problem of wireless sensor networks (WSNs) with mobile robotic sensor nodes for spatiotemporal monitoring. The proposed approach, deep reinforced learning tree (DRLT), utilizes deep reinforcement learning (DRL) to improve the efficiency of searching the most informative sampling locations. The parameterized sampling locations in an infinite horizon space are modeled according to their spatiotemporal correlations and subject to various constraints, including field estimation error and information gain. And the model-based information gain can be calculated efficiently over an infinite horizon. In this manner, the effectiveness of the sampling locations is learned through DRLT during the exploration by the robotic sensors. Then DRLT can instruct the robotic sensors to avoid unnecessary sampling locations in future iterations. Also, it is proved in this paper that the proposed algorithm is capable of searching for the near-optimal sampling locations effectively and guaranteeing a minimum field estimation error. Simulation based on national oceanic and atmospheric administration (NOAA) datasets is presented, which demonstrates the significant enhancements made by the proposed algorithm. Compared with the traditional approaches, such as the information theory-based greedy approach or random sampling, the proposed method shows a superior performance with regard to both estimation error and planning efficiency." @default.
- W2952302585 created "2019-06-27" @default.
- W2952302585 creator A5040691782 @default.
- W2952302585 creator A5061671556 @default.
- W2952302585 creator A5067099379 @default.
- W2952302585 creator A5077953037 @default.
- W2952302585 date "2020-11-01" @default.
- W2952302585 modified "2023-09-30" @default.
- W2952302585 title "Deep Reinforced Learning Tree for Spatiotemporal Monitoring With Mobile Robotic Wireless Sensor Networks" @default.
- W2952302585 cites W1493395914 @default.
- W2952302585 cites W166862392 @default.
- W2952302585 cites W1757796397 @default.
- W2952302585 cites W179875071 @default.
- W2952302585 cites W1850488217 @default.
- W2952302585 cites W1971086298 @default.
- W2952302585 cites W1987725948 @default.
- W2952302585 cites W1996718482 @default.
- W2952302585 cites W1999824796 @default.
- W2952302585 cites W2015421054 @default.
- W2952302585 cites W2019235914 @default.
- W2952302585 cites W2022163189 @default.
- W2952302585 cites W2032239956 @default.
- W2952302585 cites W2040414277 @default.
- W2952302585 cites W2042495623 @default.
- W2952302585 cites W2053023903 @default.
- W2952302585 cites W2072128103 @default.
- W2952302585 cites W2076063813 @default.
- W2952302585 cites W2089108971 @default.
- W2952302585 cites W2091642842 @default.
- W2952302585 cites W2101355568 @default.
- W2952302585 cites W2105934661 @default.
- W2952302585 cites W2110374175 @default.
- W2952302585 cites W2112411455 @default.
- W2952302585 cites W2121863487 @default.
- W2952302585 cites W2127464413 @default.
- W2952302585 cites W2131824593 @default.
- W2952302585 cites W2134238238 @default.
- W2952302585 cites W2134760334 @default.
- W2952302585 cites W2140190241 @default.
- W2952302585 cites W2142355131 @default.
- W2952302585 cites W2143022286 @default.
- W2952302585 cites W2145339207 @default.
- W2952302585 cites W2154997814 @default.
- W2952302585 cites W2155968351 @default.
- W2952302585 cites W2163605009 @default.
- W2952302585 cites W2168464387 @default.
- W2952302585 cites W2175325073 @default.
- W2952302585 cites W2327196125 @default.
- W2952302585 cites W2344954093 @default.
- W2952302585 cites W2345111710 @default.
- W2952302585 cites W2500139799 @default.
- W2952302585 cites W2520459424 @default.
- W2952302585 cites W2524241275 @default.
- W2952302585 cites W2580051904 @default.
- W2952302585 cites W2580175322 @default.
- W2952302585 cites W2587473907 @default.
- W2952302585 cites W2592911775 @default.
- W2952302585 cites W2592981353 @default.
- W2952302585 cites W2620408778 @default.
- W2952302585 cites W2739561174 @default.
- W2952302585 cites W2766745697 @default.
- W2952302585 cites W2773418006 @default.
- W2952302585 cites W2783272285 @default.
- W2952302585 cites W2801711508 @default.
- W2952302585 cites W2806832624 @default.
- W2952302585 cites W2808847742 @default.
- W2952302585 cites W2896408715 @default.
- W2952302585 cites W2938008965 @default.
- W2952302585 cites W2964121744 @default.
- W2952302585 cites W3099664902 @default.
- W2952302585 cites W3103780890 @default.
- W2952302585 doi "https://doi.org/10.1109/tsmc.2019.2920390" @default.
- W2952302585 hasPublicationYear "2020" @default.
- W2952302585 type Work @default.
- W2952302585 sameAs 2952302585 @default.
- W2952302585 citedByCount "17" @default.
- W2952302585 countsByYear W29523025852019 @default.
- W2952302585 countsByYear W29523025852020 @default.
- W2952302585 countsByYear W29523025852021 @default.
- W2952302585 countsByYear W29523025852022 @default.
- W2952302585 countsByYear W29523025852023 @default.
- W2952302585 crossrefType "journal-article" @default.
- W2952302585 hasAuthorship W2952302585A5040691782 @default.
- W2952302585 hasAuthorship W2952302585A5061671556 @default.
- W2952302585 hasAuthorship W2952302585A5067099379 @default.
- W2952302585 hasAuthorship W2952302585A5077953037 @default.
- W2952302585 hasConcept C106131492 @default.
- W2952302585 hasConcept C113174947 @default.
- W2952302585 hasConcept C11413529 @default.
- W2952302585 hasConcept C119857082 @default.
- W2952302585 hasConcept C134306372 @default.
- W2952302585 hasConcept C140779682 @default.
- W2952302585 hasConcept C154945302 @default.
- W2952302585 hasConcept C165464430 @default.
- W2952302585 hasConcept C19966478 @default.
- W2952302585 hasConcept C202444582 @default.
- W2952302585 hasConcept C24590314 @default.
- W2952302585 hasConcept C2776839635 @default.