Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952317280> ?p ?o ?g. }
- W2952317280 abstract "Abstract Whole-slide imaging of histologic sections captures tissue microenvironments and cytologic details in expansive high-resolution images. These images can be mined to extract quantitative features that describe tissues, yielding measurements for hundreds of millions of histologic objects. A central challenge in utilizing this data is enabling investigators to train and evaluate classification rules for identifying objects related to processes like angiogenesis or immune response. In this paper we describe HistomicsML, an interactive machine-learning system for digital pathology imaging datasets. This framework uses active learning to direct user feedback, making classifier training efficient and scalable in datasets containing 10 8 + histologic objects. We demonstrate how this system can be used to phenotype microvascular structures in gliomas to predict survival, and to explore the molecular pathways associated with these phenotypes. Our approach enables researchers to unlock phenotypic information from digital pathology datasets to investigate prognostic image biomarkers and genotype-phenotype associations." @default.
- W2952317280 created "2019-06-27" @default.
- W2952317280 creator A5001967366 @default.
- W2952317280 creator A5005053437 @default.
- W2952317280 creator A5018258568 @default.
- W2952317280 creator A5034820084 @default.
- W2952317280 creator A5038167656 @default.
- W2952317280 creator A5073937900 @default.
- W2952317280 creator A5078117841 @default.
- W2952317280 creator A5078484855 @default.
- W2952317280 date "2017-11-06" @default.
- W2952317280 modified "2023-09-30" @default.
- W2952317280 title "Interactive phenotyping of large-scale histology imaging data with HistomicsML" @default.
- W2952317280 cites W1807639988 @default.
- W2952317280 cites W1812256879 @default.
- W2952317280 cites W1963980798 @default.
- W2952317280 cites W1969624577 @default.
- W2952317280 cites W1969925021 @default.
- W2952317280 cites W1978041336 @default.
- W2952317280 cites W2044702943 @default.
- W2952317280 cites W2054001958 @default.
- W2952317280 cites W2073943895 @default.
- W2952317280 cites W2080743883 @default.
- W2952317280 cites W2080971197 @default.
- W2952317280 cites W2084139018 @default.
- W2952317280 cites W2091662955 @default.
- W2952317280 cites W2093807449 @default.
- W2952317280 cites W2097486055 @default.
- W2952317280 cites W2099540110 @default.
- W2952317280 cites W2100825082 @default.
- W2952317280 cites W2107554012 @default.
- W2952317280 cites W2110243528 @default.
- W2952317280 cites W2116574496 @default.
- W2952317280 cites W2130410032 @default.
- W2952317280 cites W2136636278 @default.
- W2952317280 cites W2136773811 @default.
- W2952317280 cites W2139442812 @default.
- W2952317280 cites W2139539695 @default.
- W2952317280 cites W2140676103 @default.
- W2952317280 cites W2150461375 @default.
- W2952317280 cites W2153081307 @default.
- W2952317280 cites W2157985193 @default.
- W2952317280 cites W2170273827 @default.
- W2952317280 cites W2201011793 @default.
- W2952317280 cites W2234666690 @default.
- W2952317280 cites W2263206910 @default.
- W2952317280 cites W228600387 @default.
- W2952317280 cites W2302302587 @default.
- W2952317280 cites W2401520370 @default.
- W2952317280 cites W2524066112 @default.
- W2952317280 cites W2542446037 @default.
- W2952317280 cites W2903919837 @default.
- W2952317280 cites W4240107290 @default.
- W2952317280 cites W4251002338 @default.
- W2952317280 doi "https://doi.org/10.1038/s41598-017-15092-3" @default.
- W2952317280 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5674015" @default.
- W2952317280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29109450" @default.
- W2952317280 hasPublicationYear "2017" @default.
- W2952317280 type Work @default.
- W2952317280 sameAs 2952317280 @default.
- W2952317280 citedByCount "42" @default.
- W2952317280 countsByYear W29523172802018 @default.
- W2952317280 countsByYear W29523172802019 @default.
- W2952317280 countsByYear W29523172802020 @default.
- W2952317280 countsByYear W29523172802021 @default.
- W2952317280 countsByYear W29523172802022 @default.
- W2952317280 countsByYear W29523172802023 @default.
- W2952317280 crossrefType "journal-article" @default.
- W2952317280 hasAuthorship W2952317280A5001967366 @default.
- W2952317280 hasAuthorship W2952317280A5005053437 @default.
- W2952317280 hasAuthorship W2952317280A5018258568 @default.
- W2952317280 hasAuthorship W2952317280A5034820084 @default.
- W2952317280 hasAuthorship W2952317280A5038167656 @default.
- W2952317280 hasAuthorship W2952317280A5073937900 @default.
- W2952317280 hasAuthorship W2952317280A5078117841 @default.
- W2952317280 hasAuthorship W2952317280A5078484855 @default.
- W2952317280 hasBestOaLocation W29523172801 @default.
- W2952317280 hasConcept C104317684 @default.
- W2952317280 hasConcept C127716648 @default.
- W2952317280 hasConcept C142724271 @default.
- W2952317280 hasConcept C153180895 @default.
- W2952317280 hasConcept C154945302 @default.
- W2952317280 hasConcept C159985019 @default.
- W2952317280 hasConcept C192562407 @default.
- W2952317280 hasConcept C2777522853 @default.
- W2952317280 hasConcept C2780502288 @default.
- W2952317280 hasConcept C30407753 @default.
- W2952317280 hasConcept C41008148 @default.
- W2952317280 hasConcept C48044578 @default.
- W2952317280 hasConcept C55493867 @default.
- W2952317280 hasConcept C71924100 @default.
- W2952317280 hasConcept C77088390 @default.
- W2952317280 hasConcept C86803240 @default.
- W2952317280 hasConcept C95623464 @default.
- W2952317280 hasConceptScore W2952317280C104317684 @default.
- W2952317280 hasConceptScore W2952317280C127716648 @default.
- W2952317280 hasConceptScore W2952317280C142724271 @default.
- W2952317280 hasConceptScore W2952317280C153180895 @default.
- W2952317280 hasConceptScore W2952317280C154945302 @default.
- W2952317280 hasConceptScore W2952317280C159985019 @default.