Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952322169> ?p ?o ?g. }
- W2952322169 abstract "Mutation testing is a powerful technique for evaluating the quality of test suite which plays a key role in ensuring software quality. The concept of mutation testing has also been widely used in other software engineering studies, e.g., test generation, fault localization, and program repair. During the process of mutation testing, large number of mutants may be generated and then executed against the test suite to examine whether they can be killed, making the process extremely computational expensive. Several techniques have been proposed to speed up this process, including selective, weakened, and predictive mutation testing. Among those techniques, Predictive Mutation Testing (PMT) tries to build a classification model based on an amount of mutant execution records to predict whether coming new mutants would be killed or alive without mutant execution, and can achieve significant mutation cost reduction. In PMT, each mutant is represented as a list of features related to the mutant itself and the test suite, transforming the mutation testing problem to a binary classification problem. In this paper, we perform an extensive study on the effectiveness and efficiency of the promising PMT technique under the cross-project setting using a total 654 real world projects with more than 4 Million mutants. Our work also complements the original PMT work by considering more features and the powerful deep learning models. The experimental results show an average of over 0.85 prediction accuracy on 654 projects using cross validation, demonstrating the effectiveness of PMT. Meanwhile, a clear speed up is also observed with an average of 28.7× compared to traditional mutation testing with 5 threads. In addition, we analyze the importance of different groups of features in classification model, which provides important implications for the future research." @default.
- W2952322169 created "2019-06-27" @default.
- W2952322169 creator A5017180771 @default.
- W2952322169 creator A5043546718 @default.
- W2952322169 creator A5057474860 @default.
- W2952322169 date "2019-04-01" @default.
- W2952322169 modified "2023-10-15" @default.
- W2952322169 title "An Extensive Study on Cross-Project Predictive Mutation Testing" @default.
- W2952322169 cites W1564132362 @default.
- W2952322169 cites W1952705227 @default.
- W2952322169 cites W1963679610 @default.
- W2952322169 cites W1963924029 @default.
- W2952322169 cites W1990785546 @default.
- W2952322169 cites W1995023328 @default.
- W2952322169 cites W2001005268 @default.
- W2952322169 cites W2002386085 @default.
- W2952322169 cites W2002644983 @default.
- W2952322169 cites W2003385991 @default.
- W2952322169 cites W2003948571 @default.
- W2952322169 cites W2018017297 @default.
- W2952322169 cites W2032754744 @default.
- W2952322169 cites W2039961261 @default.
- W2952322169 cites W2044527526 @default.
- W2952322169 cites W2044802063 @default.
- W2952322169 cites W2049695835 @default.
- W2952322169 cites W2053873374 @default.
- W2952322169 cites W2054751837 @default.
- W2952322169 cites W2056132907 @default.
- W2952322169 cites W2070936907 @default.
- W2952322169 cites W2075592454 @default.
- W2952322169 cites W2080521990 @default.
- W2952322169 cites W2091556188 @default.
- W2952322169 cites W2099855131 @default.
- W2952322169 cites W2105832118 @default.
- W2952322169 cites W2108557864 @default.
- W2952322169 cites W2112025128 @default.
- W2952322169 cites W2112796928 @default.
- W2952322169 cites W2116622216 @default.
- W2952322169 cites W2121084350 @default.
- W2952322169 cites W2125727889 @default.
- W2952322169 cites W2129761255 @default.
- W2952322169 cites W2133614703 @default.
- W2952322169 cites W2135841285 @default.
- W2952322169 cites W2135937266 @default.
- W2952322169 cites W2142827986 @default.
- W2952322169 cites W2151497118 @default.
- W2952322169 cites W2153881107 @default.
- W2952322169 cites W2155653793 @default.
- W2952322169 cites W2157755550 @default.
- W2952322169 cites W2240451833 @default.
- W2952322169 cites W2360967250 @default.
- W2952322169 cites W2385483600 @default.
- W2952322169 cites W2469179788 @default.
- W2952322169 cites W2511803001 @default.
- W2952322169 cites W2545684011 @default.
- W2952322169 cites W2592340788 @default.
- W2952322169 cites W2607160846 @default.
- W2952322169 cites W2614541902 @default.
- W2952322169 cites W2620081107 @default.
- W2952322169 cites W2740861372 @default.
- W2952322169 cites W2762786131 @default.
- W2952322169 cites W2793776506 @default.
- W2952322169 cites W2795030435 @default.
- W2952322169 cites W2805937249 @default.
- W2952322169 cites W2911964244 @default.
- W2952322169 cites W2919115771 @default.
- W2952322169 cites W2963327228 @default.
- W2952322169 cites W3098598077 @default.
- W2952322169 cites W4229850662 @default.
- W2952322169 cites W4231241365 @default.
- W2952322169 cites W4239510810 @default.
- W2952322169 doi "https://doi.org/10.1109/icst.2019.00025" @default.
- W2952322169 hasPublicationYear "2019" @default.
- W2952322169 type Work @default.
- W2952322169 sameAs 2952322169 @default.
- W2952322169 citedByCount "22" @default.
- W2952322169 countsByYear W29523221692019 @default.
- W2952322169 countsByYear W29523221692020 @default.
- W2952322169 countsByYear W29523221692021 @default.
- W2952322169 countsByYear W29523221692022 @default.
- W2952322169 countsByYear W29523221692023 @default.
- W2952322169 crossrefType "proceedings-article" @default.
- W2952322169 hasAuthorship W2952322169A5017180771 @default.
- W2952322169 hasAuthorship W2952322169A5043546718 @default.
- W2952322169 hasAuthorship W2952322169A5057474860 @default.
- W2952322169 hasConcept C104317684 @default.
- W2952322169 hasConcept C119857082 @default.
- W2952322169 hasConcept C124101348 @default.
- W2952322169 hasConcept C127413603 @default.
- W2952322169 hasConcept C128942645 @default.
- W2952322169 hasConcept C143065580 @default.
- W2952322169 hasConcept C151552104 @default.
- W2952322169 hasConcept C152877465 @default.
- W2952322169 hasConcept C154945302 @default.
- W2952322169 hasConcept C163565370 @default.
- W2952322169 hasConcept C166957645 @default.
- W2952322169 hasConcept C199360897 @default.
- W2952322169 hasConcept C200601418 @default.
- W2952322169 hasConcept C2775928411 @default.
- W2952322169 hasConcept C2777904410 @default.