Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952327506> ?p ?o ?g. }
- W2952327506 endingPage "5017" @default.
- W2952327506 startingPage "5011" @default.
- W2952327506 abstract "Abstract Motivation One of the main goals in systems biology is to learn molecular regulatory networks from quantitative profile data. In particular, Gaussian graphical models (GGMs) are widely used network models in bioinformatics where variables (e.g. transcripts, metabolites or proteins) are represented by nodes, and pairs of nodes are connected with an edge according to their partial correlation. Reconstructing a GGM from data is a challenging task when the sample size is smaller than the number of variables. The main problem consists in finding the inverse of the covariance estimator which is ill-conditioned in this case. Shrinkage-based covariance estimators are a popular approach, producing an invertible ‘shrunk’ covariance. However, a proper significance test for the ‘shrunk’ partial correlation (i.e. the GGM edges) is an open challenge as a probability density including the shrinkage is unknown. In this article, we present (i) a geometric reformulation of the shrinkage-based GGM, and (ii) a probability density that naturally includes the shrinkage parameter. Results Our results show that the inference using this new ‘shrunk’ probability density is as accurate as Monte Carlo estimation (an unbiased non-parametric method) for any shrinkage value, while being computationally more efficient. We show on synthetic data how the novel test for significance allows an accurate control of the Type I error and outperforms the network reconstruction obtained by the widely used R package GeneNet. This is further highlighted in two gene expression datasets from stress response in Eschericha coli, and the effect of influenza infection in Mus musculus. Availability and implementation https://github.com/V-Bernal/GGM-Shrinkage Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2952327506 created "2019-06-27" @default.
- W2952327506 creator A5004451723 @default.
- W2952327506 creator A5006922451 @default.
- W2952327506 creator A5050979301 @default.
- W2952327506 creator A5068721139 @default.
- W2952327506 creator A5087131640 @default.
- W2952327506 date "2019-05-11" @default.
- W2952327506 modified "2023-10-12" @default.
- W2952327506 title "Exact hypothesis testing for shrinkage-based Gaussian graphical models" @default.
- W2952327506 cites W1494413412 @default.
- W2952327506 cites W1573144549 @default.
- W2952327506 cites W1824047490 @default.
- W2952327506 cites W1892101717 @default.
- W2952327506 cites W1968055555 @default.
- W2952327506 cites W1990512452 @default.
- W2952327506 cites W2011312755 @default.
- W2952327506 cites W2049131636 @default.
- W2952327506 cites W2062125287 @default.
- W2952327506 cites W2072735345 @default.
- W2952327506 cites W2103017472 @default.
- W2952327506 cites W2109860416 @default.
- W2952327506 cites W2117994680 @default.
- W2952327506 cites W2132555912 @default.
- W2952327506 cites W2152482800 @default.
- W2952327506 cites W2155205047 @default.
- W2952327506 cites W2165408259 @default.
- W2952327506 cites W2166347816 @default.
- W2952327506 cites W2171537806 @default.
- W2952327506 cites W2303875941 @default.
- W2952327506 cites W2537623931 @default.
- W2952327506 cites W2559466477 @default.
- W2952327506 cites W2611370172 @default.
- W2952327506 cites W2743370588 @default.
- W2952327506 cites W2767244594 @default.
- W2952327506 cites W2951538786 @default.
- W2952327506 doi "https://doi.org/10.1093/bioinformatics/btz357" @default.
- W2952327506 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6901079" @default.
- W2952327506 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31077287" @default.
- W2952327506 hasPublicationYear "2019" @default.
- W2952327506 type Work @default.
- W2952327506 sameAs 2952327506 @default.
- W2952327506 citedByCount "7" @default.
- W2952327506 countsByYear W29523275062019 @default.
- W2952327506 countsByYear W29523275062020 @default.
- W2952327506 countsByYear W29523275062021 @default.
- W2952327506 countsByYear W29523275062022 @default.
- W2952327506 countsByYear W29523275062023 @default.
- W2952327506 crossrefType "journal-article" @default.
- W2952327506 hasAuthorship W2952327506A5004451723 @default.
- W2952327506 hasAuthorship W2952327506A5006922451 @default.
- W2952327506 hasAuthorship W2952327506A5050979301 @default.
- W2952327506 hasAuthorship W2952327506A5068721139 @default.
- W2952327506 hasAuthorship W2952327506A5087131640 @default.
- W2952327506 hasBestOaLocation W29523275061 @default.
- W2952327506 hasConcept C105795698 @default.
- W2952327506 hasConcept C11413529 @default.
- W2952327506 hasConcept C121332964 @default.
- W2952327506 hasConcept C154945302 @default.
- W2952327506 hasConcept C155846161 @default.
- W2952327506 hasConcept C163716315 @default.
- W2952327506 hasConcept C178650346 @default.
- W2952327506 hasConcept C180145272 @default.
- W2952327506 hasConcept C185429906 @default.
- W2952327506 hasConcept C2776214188 @default.
- W2952327506 hasConcept C33923547 @default.
- W2952327506 hasConcept C41008148 @default.
- W2952327506 hasConcept C62520636 @default.
- W2952327506 hasConcept C87007009 @default.
- W2952327506 hasConceptScore W2952327506C105795698 @default.
- W2952327506 hasConceptScore W2952327506C11413529 @default.
- W2952327506 hasConceptScore W2952327506C121332964 @default.
- W2952327506 hasConceptScore W2952327506C154945302 @default.
- W2952327506 hasConceptScore W2952327506C155846161 @default.
- W2952327506 hasConceptScore W2952327506C163716315 @default.
- W2952327506 hasConceptScore W2952327506C178650346 @default.
- W2952327506 hasConceptScore W2952327506C180145272 @default.
- W2952327506 hasConceptScore W2952327506C185429906 @default.
- W2952327506 hasConceptScore W2952327506C2776214188 @default.
- W2952327506 hasConceptScore W2952327506C33923547 @default.
- W2952327506 hasConceptScore W2952327506C41008148 @default.
- W2952327506 hasConceptScore W2952327506C62520636 @default.
- W2952327506 hasConceptScore W2952327506C87007009 @default.
- W2952327506 hasFunder F4320320366 @default.
- W2952327506 hasFunder F4320320933 @default.
- W2952327506 hasIssue "23" @default.
- W2952327506 hasLocation W29523275061 @default.
- W2952327506 hasLocation W29523275062 @default.
- W2952327506 hasLocation W29523275063 @default.
- W2952327506 hasLocation W29523275064 @default.
- W2952327506 hasLocation W29523275065 @default.
- W2952327506 hasOpenAccess W2952327506 @default.
- W2952327506 hasPrimaryLocation W29523275061 @default.
- W2952327506 hasRelatedWork W1572138509 @default.
- W2952327506 hasRelatedWork W1989745763 @default.
- W2952327506 hasRelatedWork W2109849264 @default.
- W2952327506 hasRelatedWork W2215785064 @default.
- W2952327506 hasRelatedWork W2949445997 @default.