Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952337401> ?p ?o ?g. }
- W2952337401 abstract "Two factorizations of a permutation into products of cycles are equivalent if one can be obtained from the other by repeatedly interchanging adjacent disjoint factors. This paper studies the enumeration of equivalence classes under this relation. We obtain closed form expressions for generating series of inequivalent minimal transitive factorizations of permutations having up to three cycles, and also of permutations with four cycles when factors are restricted to be transpositions. Our derivations rely on a new correspondence between inequivalent factorizations and acyclic alternating digraphs. Strong similarities between the enumerative results derived here and analogous ones for ordinary factorizations suggest that a unified theory remains to be discovered. We also establish connections between inequivalent factorizations and other well-studied classes of permutation factorizations. In particular, a relationship with monotone factorizations allows us to recover an exact counting formula for the latter due to Goulden, Guay-Paquet and Novak." @default.
- W2952337401 created "2019-06-27" @default.
- W2952337401 creator A5001276084 @default.
- W2952337401 creator A5028480531 @default.
- W2952337401 date "2014-05-20" @default.
- W2952337401 modified "2023-09-27" @default.
- W2952337401 title "Inequivalent Factorizations of Permutations" @default.
- W2952337401 cites W1826324575 @default.
- W2952337401 cites W1831033967 @default.
- W2952337401 cites W1971064623 @default.
- W2952337401 cites W1986886622 @default.
- W2952337401 cites W2012562437 @default.
- W2952337401 cites W2028897994 @default.
- W2952337401 cites W2039798957 @default.
- W2952337401 cites W2041751801 @default.
- W2952337401 cites W2051849172 @default.
- W2952337401 cites W2083281846 @default.
- W2952337401 cites W2094523459 @default.
- W2952337401 cites W2104003784 @default.
- W2952337401 cites W2112156936 @default.
- W2952337401 cites W2146949677 @default.
- W2952337401 cites W2150514516 @default.
- W2952337401 cites W2163903931 @default.
- W2952337401 cites W2311329553 @default.
- W2952337401 cites W2315362388 @default.
- W2952337401 cites W2799004609 @default.
- W2952337401 cites W2962884658 @default.
- W2952337401 cites W2963691152 @default.
- W2952337401 cites W2963693274 @default.
- W2952337401 cites W3098216431 @default.
- W2952337401 cites W3101579407 @default.
- W2952337401 cites W3104596182 @default.
- W2952337401 cites W606979580 @default.
- W2952337401 hasPublicationYear "2014" @default.
- W2952337401 type Work @default.
- W2952337401 sameAs 2952337401 @default.
- W2952337401 citedByCount "0" @default.
- W2952337401 crossrefType "posted-content" @default.
- W2952337401 hasAuthorship W2952337401A5001276084 @default.
- W2952337401 hasAuthorship W2952337401A5028480531 @default.
- W2952337401 hasConcept C114614502 @default.
- W2952337401 hasConcept C118615104 @default.
- W2952337401 hasConcept C121332964 @default.
- W2952337401 hasConcept C127413603 @default.
- W2952337401 hasConcept C143724316 @default.
- W2952337401 hasConcept C146978453 @default.
- W2952337401 hasConcept C151730666 @default.
- W2952337401 hasConcept C156103551 @default.
- W2952337401 hasConcept C156340839 @default.
- W2952337401 hasConcept C191399111 @default.
- W2952337401 hasConcept C21308566 @default.
- W2952337401 hasConcept C24890656 @default.
- W2952337401 hasConcept C2524010 @default.
- W2952337401 hasConcept C25343380 @default.
- W2952337401 hasConcept C2776637919 @default.
- W2952337401 hasConcept C2780069185 @default.
- W2952337401 hasConcept C2834757 @default.
- W2952337401 hasConcept C33923547 @default.
- W2952337401 hasConcept C41008148 @default.
- W2952337401 hasConcept C45340560 @default.
- W2952337401 hasConcept C77088390 @default.
- W2952337401 hasConcept C86803240 @default.
- W2952337401 hasConceptScore W2952337401C114614502 @default.
- W2952337401 hasConceptScore W2952337401C118615104 @default.
- W2952337401 hasConceptScore W2952337401C121332964 @default.
- W2952337401 hasConceptScore W2952337401C127413603 @default.
- W2952337401 hasConceptScore W2952337401C143724316 @default.
- W2952337401 hasConceptScore W2952337401C146978453 @default.
- W2952337401 hasConceptScore W2952337401C151730666 @default.
- W2952337401 hasConceptScore W2952337401C156103551 @default.
- W2952337401 hasConceptScore W2952337401C156340839 @default.
- W2952337401 hasConceptScore W2952337401C191399111 @default.
- W2952337401 hasConceptScore W2952337401C21308566 @default.
- W2952337401 hasConceptScore W2952337401C24890656 @default.
- W2952337401 hasConceptScore W2952337401C2524010 @default.
- W2952337401 hasConceptScore W2952337401C25343380 @default.
- W2952337401 hasConceptScore W2952337401C2776637919 @default.
- W2952337401 hasConceptScore W2952337401C2780069185 @default.
- W2952337401 hasConceptScore W2952337401C2834757 @default.
- W2952337401 hasConceptScore W2952337401C33923547 @default.
- W2952337401 hasConceptScore W2952337401C41008148 @default.
- W2952337401 hasConceptScore W2952337401C45340560 @default.
- W2952337401 hasConceptScore W2952337401C77088390 @default.
- W2952337401 hasConceptScore W2952337401C86803240 @default.
- W2952337401 hasLocation W29523374011 @default.
- W2952337401 hasOpenAccess W2952337401 @default.
- W2952337401 hasPrimaryLocation W29523374011 @default.
- W2952337401 hasRelatedWork W1976242587 @default.
- W2952337401 hasRelatedWork W2056514476 @default.
- W2952337401 hasRelatedWork W2087780064 @default.
- W2952337401 hasRelatedWork W2092556779 @default.
- W2952337401 hasRelatedWork W2117509168 @default.
- W2952337401 hasRelatedWork W2129732966 @default.
- W2952337401 hasRelatedWork W2564871730 @default.
- W2952337401 hasRelatedWork W2766315635 @default.
- W2952337401 hasRelatedWork W2772301230 @default.
- W2952337401 hasRelatedWork W2780725160 @default.
- W2952337401 hasRelatedWork W2797393441 @default.
- W2952337401 hasRelatedWork W2904562472 @default.
- W2952337401 hasRelatedWork W2945752163 @default.