Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952342008> ?p ?o ?g. }
- W2952342008 endingPage "i42" @default.
- W2952342008 startingPage "i32" @default.
- W2952342008 abstract "Abstract Motivation Microbial communities play important roles in the function and maintenance of various biosystems, ranging from the human body to the environment. A major challenge in microbiome research is the classification of microbial communities of different environments or host phenotypes. The most common and cost-effective approach for such studies to date is 16S rRNA gene sequencing. Recent falls in sequencing costs have increased the demand for simple, efficient and accurate methods for rapid detection or diagnosis with proved applications in medicine, agriculture and forensic science. We describe a reference- and alignment-free approach for predicting environments and host phenotypes from 16S rRNA gene sequencing based on k-mer representations that benefits from a bootstrapping framework for investigating the sufficiency of shallow sub-samples. Deep learning methods as well as classical approaches were explored for predicting environments and host phenotypes. Results A k-mer distribution of shallow sub-samples outperformed Operational Taxonomic Unit (OTU) features in the tasks of body-site identification and Crohn’s disease prediction. Aside from being more accurate, using k-mer features in shallow sub-samples allows (i) skipping computationally costly sequence alignments required in OTU-picking and (ii) provided a proof of concept for the sufficiency of shallow and short-length 16S rRNA sequencing for phenotype prediction. In addition, k-mer features predicted representative 16S rRNA gene sequences of 18 ecological environments, and 5 organismal environments with high macro-F1 scores of 0.88 and 0.87. For large datasets, deep learning outperformed classical methods such as Random Forest and Support Vector Machine. Availability and implementation The software and datasets are available at https://llp.berkeley.edu/micropheno. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2952342008 created "2019-06-27" @default.
- W2952342008 creator A5004212008 @default.
- W2952342008 creator A5014316659 @default.
- W2952342008 creator A5062246663 @default.
- W2952342008 creator A5081103408 @default.
- W2952342008 date "2018-06-27" @default.
- W2952342008 modified "2023-10-14" @default.
- W2952342008 title "MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples" @default.
- W2952342008 cites W1501213224 @default.
- W2952342008 cites W1501531009 @default.
- W2952342008 cites W1502255907 @default.
- W2952342008 cites W1596717185 @default.
- W2952342008 cites W1811186957 @default.
- W2952342008 cites W1963864447 @default.
- W2952342008 cites W1963994909 @default.
- W2952342008 cites W1971100822 @default.
- W2952342008 cites W1972061352 @default.
- W2952342008 cites W1985599412 @default.
- W2952342008 cites W1989889539 @default.
- W2952342008 cites W1993399595 @default.
- W2952342008 cites W2030108859 @default.
- W2952342008 cites W2033136694 @default.
- W2952342008 cites W2034285706 @default.
- W2952342008 cites W2038217946 @default.
- W2952342008 cites W2044240998 @default.
- W2952342008 cites W2051322058 @default.
- W2952342008 cites W2060254952 @default.
- W2952342008 cites W2066011810 @default.
- W2952342008 cites W2072970694 @default.
- W2952342008 cites W2075181940 @default.
- W2952342008 cites W2083395367 @default.
- W2952342008 cites W2085284704 @default.
- W2952342008 cites W2096128575 @default.
- W2952342008 cites W2099839022 @default.
- W2952342008 cites W2104975759 @default.
- W2952342008 cites W2108718991 @default.
- W2952342008 cites W2116569898 @default.
- W2952342008 cites W2124793489 @default.
- W2952342008 cites W2128769815 @default.
- W2952342008 cites W2136879569 @default.
- W2952342008 cites W2136993578 @default.
- W2952342008 cites W2138785419 @default.
- W2952342008 cites W2146975236 @default.
- W2952342008 cites W2147637673 @default.
- W2952342008 cites W2150337627 @default.
- W2952342008 cites W2153744765 @default.
- W2952342008 cites W2154026962 @default.
- W2952342008 cites W2159008215 @default.
- W2952342008 cites W2159954944 @default.
- W2952342008 cites W2163922914 @default.
- W2952342008 cites W2170951896 @default.
- W2952342008 cites W2171571559 @default.
- W2952342008 cites W2225659342 @default.
- W2952342008 cites W2239108612 @default.
- W2952342008 cites W2311607323 @default.
- W2952342008 cites W2337747100 @default.
- W2952342008 cites W2340423564 @default.
- W2952342008 cites W2401404581 @default.
- W2952342008 cites W2473355215 @default.
- W2952342008 cites W2560181459 @default.
- W2952342008 cites W2563720483 @default.
- W2952342008 cites W2569243243 @default.
- W2952342008 cites W2586959160 @default.
- W2952342008 cites W2597605420 @default.
- W2952342008 cites W2610066872 @default.
- W2952342008 cites W2625623849 @default.
- W2952342008 cites W2726481934 @default.
- W2952342008 cites W2731018572 @default.
- W2952342008 cites W2748607273 @default.
- W2952342008 cites W2766981008 @default.
- W2952342008 cites W2771045365 @default.
- W2952342008 cites W2786335128 @default.
- W2952342008 cites W2911964244 @default.
- W2952342008 cites W2963905884 @default.
- W2952342008 doi "https://doi.org/10.1093/bioinformatics/bty296" @default.
- W2952342008 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6419898" @default.
- W2952342008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30099528" @default.
- W2952342008 hasPublicationYear "2018" @default.
- W2952342008 type Work @default.
- W2952342008 sameAs 2952342008 @default.
- W2952342008 citedByCount "63" @default.
- W2952342008 countsByYear W29523420082018 @default.
- W2952342008 countsByYear W29523420082019 @default.
- W2952342008 countsByYear W29523420082020 @default.
- W2952342008 countsByYear W29523420082021 @default.
- W2952342008 countsByYear W29523420082022 @default.
- W2952342008 countsByYear W29523420082023 @default.
- W2952342008 crossrefType "journal-article" @default.
- W2952342008 hasAuthorship W2952342008A5004212008 @default.
- W2952342008 hasAuthorship W2952342008A5014316659 @default.
- W2952342008 hasAuthorship W2952342008A5062246663 @default.
- W2952342008 hasAuthorship W2952342008A5081103408 @default.
- W2952342008 hasBestOaLocation W29523420081 @default.
- W2952342008 hasConcept C104317684 @default.
- W2952342008 hasConcept C116834253 @default.
- W2952342008 hasConcept C119857082 @default.
- W2952342008 hasConcept C126831891 @default.