Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952395326> ?p ?o ?g. }
- W2952395326 abstract "Self-attention is an attention mechanism that learns a representation by relating different positions in the sequence. The transformer, which is a sequence model solely based on self-attention, and its variants achieved state-of-the-art results in many natural language processing tasks. Since music composes its semantics based on the relations between components in sparse positions, adopting the self-attention mechanism to solve music information retrieval (MIR) problems can be beneficial. Hence, we propose a self-attention based deep sequence model for music tagging. The proposed architecture consists of shallow convolutional layers followed by stacked Transformer encoders. Compared to conventional approaches using fully convolutional or recurrent neural networks, our model is more interpretable while reporting competitive results. We validate the performance of our model with the MagnaTagATune and the Million Song Dataset. In addition, we demonstrate the interpretability of the proposed architecture with a heat map visualization." @default.
- W2952395326 created "2019-06-27" @default.
- W2952395326 creator A5006479715 @default.
- W2952395326 creator A5041096205 @default.
- W2952395326 creator A5067167236 @default.
- W2952395326 date "2019-06-12" @default.
- W2952395326 modified "2023-09-27" @default.
- W2952395326 title "Toward Interpretable Music Tagging with Self-Attention" @default.
- W2952395326 cites W1556219185 @default.
- W2952395326 cites W1815076433 @default.
- W2952395326 cites W1922658220 @default.
- W2952395326 cites W1976526581 @default.
- W2952395326 cites W2127870748 @default.
- W2952395326 cites W2191779130 @default.
- W2952395326 cites W2194775991 @default.
- W2952395326 cites W2198584637 @default.
- W2952395326 cites W2250966211 @default.
- W2952395326 cites W2385545 @default.
- W2952395326 cites W2461724944 @default.
- W2952395326 cites W2519091744 @default.
- W2952395326 cites W2583165630 @default.
- W2952395326 cites W2597655663 @default.
- W2952395326 cites W2604509013 @default.
- W2952395326 cites W2617242334 @default.
- W2952395326 cites W2760327630 @default.
- W2952395326 cites W2771429098 @default.
- W2952395326 cites W2772984056 @default.
- W2952395326 cites W2776855315 @default.
- W2952395326 cites W2779809129 @default.
- W2952395326 cites W2795278834 @default.
- W2952395326 cites W2804078698 @default.
- W2952395326 cites W2809032546 @default.
- W2952395326 cites W2895976713 @default.
- W2952395326 cites W2898148140 @default.
- W2952395326 cites W2903340952 @default.
- W2952395326 cites W2962813390 @default.
- W2952395326 cites W2962835968 @default.
- W2952395326 cites W2963091558 @default.
- W2952395326 cites W2963208657 @default.
- W2952395326 cites W2963266682 @default.
- W2952395326 cites W2963341956 @default.
- W2952395326 cites W2963369619 @default.
- W2952395326 cites W2963403868 @default.
- W2952395326 cites W2963451564 @default.
- W2952395326 cites W2963550089 @default.
- W2952395326 cites W2963551352 @default.
- W2952395326 cites W2964121744 @default.
- W2952395326 cites W2964218314 @default.
- W2952395326 cites W3028311979 @default.
- W2952395326 cites W2573660531 @default.
- W2952395326 doi "https://doi.org/10.48550/arxiv.1906.04972" @default.
- W2952395326 hasPublicationYear "2019" @default.
- W2952395326 type Work @default.
- W2952395326 sameAs 2952395326 @default.
- W2952395326 citedByCount "15" @default.
- W2952395326 countsByYear W29523953262019 @default.
- W2952395326 countsByYear W29523953262020 @default.
- W2952395326 countsByYear W29523953262021 @default.
- W2952395326 crossrefType "posted-content" @default.
- W2952395326 hasAuthorship W2952395326A5006479715 @default.
- W2952395326 hasAuthorship W2952395326A5041096205 @default.
- W2952395326 hasAuthorship W2952395326A5067167236 @default.
- W2952395326 hasBestOaLocation W29523953261 @default.
- W2952395326 hasConcept C111919701 @default.
- W2952395326 hasConcept C118505674 @default.
- W2952395326 hasConcept C121332964 @default.
- W2952395326 hasConcept C123657996 @default.
- W2952395326 hasConcept C142362112 @default.
- W2952395326 hasConcept C153349607 @default.
- W2952395326 hasConcept C154945302 @default.
- W2952395326 hasConcept C165801399 @default.
- W2952395326 hasConcept C17744445 @default.
- W2952395326 hasConcept C199539241 @default.
- W2952395326 hasConcept C204321447 @default.
- W2952395326 hasConcept C2776359362 @default.
- W2952395326 hasConcept C2778112365 @default.
- W2952395326 hasConcept C2781067378 @default.
- W2952395326 hasConcept C36464697 @default.
- W2952395326 hasConcept C41008148 @default.
- W2952395326 hasConcept C54355233 @default.
- W2952395326 hasConcept C62520636 @default.
- W2952395326 hasConcept C66322947 @default.
- W2952395326 hasConcept C81363708 @default.
- W2952395326 hasConcept C86803240 @default.
- W2952395326 hasConcept C94625758 @default.
- W2952395326 hasConceptScore W2952395326C111919701 @default.
- W2952395326 hasConceptScore W2952395326C118505674 @default.
- W2952395326 hasConceptScore W2952395326C121332964 @default.
- W2952395326 hasConceptScore W2952395326C123657996 @default.
- W2952395326 hasConceptScore W2952395326C142362112 @default.
- W2952395326 hasConceptScore W2952395326C153349607 @default.
- W2952395326 hasConceptScore W2952395326C154945302 @default.
- W2952395326 hasConceptScore W2952395326C165801399 @default.
- W2952395326 hasConceptScore W2952395326C17744445 @default.
- W2952395326 hasConceptScore W2952395326C199539241 @default.
- W2952395326 hasConceptScore W2952395326C204321447 @default.
- W2952395326 hasConceptScore W2952395326C2776359362 @default.
- W2952395326 hasConceptScore W2952395326C2778112365 @default.
- W2952395326 hasConceptScore W2952395326C2781067378 @default.
- W2952395326 hasConceptScore W2952395326C36464697 @default.