Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952406314> ?p ?o ?g. }
- W2952406314 endingPage "1" @default.
- W2952406314 startingPage "1" @default.
- W2952406314 abstract "Recent advances in the field of radiomics have enabled the development of a number of prognostic and predictive imaging-based tools for a variety of diseases. However, wider clinical adoption of these tools is contingent on their generalizability across multiple sites and scanners. This may be particularly relevant in the context of radiomic features derived from T1- or T2-weighted magnetic resonance images (MRIs), where signal intensity values are known to lack tissue-specific meaning and vary based on differing acquisition protocols between institutions. We present the first empirical study of benchmarking five different radiomic feature families in terms of both reproducibility and discriminability in a multisite setting, specifically, for identifying prostate tumors in the peripheral zone on MRI. Our cohort comprised 147 patient T2-weighted MRI datasets from four different sites, all of which are first preprocessed to correct for acquisition-related artifacts such as bias field, differing voxel resolutions, and intensity drift (nonstandardness). About 406 three-dimensional voxel-wise radiomic features from five different families (gray, Haralick, gradient, Laws, and Gabor) were evaluated in a cross-site setting to determine (a) how reproducible they are within a relatively homogeneous nontumor tissue region and (b) how well they could discriminate tumor regions from nontumor regions. Our results demonstrate that a majority of the popular Haralick features are reproducible in over 99% of all cross-site comparisons, as well as achieve excellent cross-site discriminability (classification accuracy of ≈0.8 ). By contrast, a majority of Laws features are highly variable across sites (reproducible in <75% of all cross-site comparisons) as well as resulting in low cross-site classifier accuracies ( <0.6 ), likely due to a large number of noisy filter responses that can be extracted. These trends suggest that only a subset of radiomic features and associated parameters may be both reproducible and discriminable enough for use within machine learning classifier schemes." @default.
- W2952406314 created "2019-06-27" @default.
- W2952406314 creator A5016940872 @default.
- W2952406314 creator A5017466934 @default.
- W2952406314 creator A5027642699 @default.
- W2952406314 creator A5049607541 @default.
- W2952406314 creator A5055473847 @default.
- W2952406314 creator A5059325659 @default.
- W2952406314 creator A5067908938 @default.
- W2952406314 creator A5078884487 @default.
- W2952406314 creator A5084865365 @default.
- W2952406314 date "2019-06-14" @default.
- W2952406314 modified "2023-10-13" @default.
- W2952406314 title "Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral zone prostate tumors on MRI" @default.
- W2952406314 cites W1408981388 @default.
- W2952406314 cites W1659432430 @default.
- W2952406314 cites W1917894041 @default.
- W2952406314 cites W1987054640 @default.
- W2952406314 cites W1995777280 @default.
- W2952406314 cites W2016494145 @default.
- W2952406314 cites W2018079976 @default.
- W2952406314 cites W2049522781 @default.
- W2952406314 cites W2059432853 @default.
- W2952406314 cites W2061077502 @default.
- W2952406314 cites W2077729384 @default.
- W2952406314 cites W2086298272 @default.
- W2952406314 cites W2088339151 @default.
- W2952406314 cites W2089588713 @default.
- W2952406314 cites W2097475056 @default.
- W2952406314 cites W2117340355 @default.
- W2952406314 cites W2134139970 @default.
- W2952406314 cites W2154158661 @default.
- W2952406314 cites W2155653793 @default.
- W2952406314 cites W2171181782 @default.
- W2952406314 cites W2253262801 @default.
- W2952406314 cites W2313544040 @default.
- W2952406314 cites W2327203407 @default.
- W2952406314 cites W2398056625 @default.
- W2952406314 cites W2507644960 @default.
- W2952406314 cites W2510367179 @default.
- W2952406314 cites W2517065464 @default.
- W2952406314 cites W2537109170 @default.
- W2952406314 cites W2562490391 @default.
- W2952406314 cites W2566749675 @default.
- W2952406314 cites W2612525537 @default.
- W2952406314 cites W2616461360 @default.
- W2952406314 cites W2622525157 @default.
- W2952406314 cites W2626946189 @default.
- W2952406314 cites W2751538714 @default.
- W2952406314 cites W2754307925 @default.
- W2952406314 cites W2755129255 @default.
- W2952406314 cites W2756088876 @default.
- W2952406314 cites W2767121451 @default.
- W2952406314 cites W2790393522 @default.
- W2952406314 cites W2790681451 @default.
- W2952406314 cites W2792090783 @default.
- W2952406314 cites W2800038717 @default.
- W2952406314 cites W2887494772 @default.
- W2952406314 cites W2900495198 @default.
- W2952406314 cites W2902344291 @default.
- W2952406314 cites W313065440 @default.
- W2952406314 cites W4212857528 @default.
- W2952406314 cites W4241006305 @default.
- W2952406314 cites W4249163235 @default.
- W2952406314 cites W4256188663 @default.
- W2952406314 cites W4292929767 @default.
- W2952406314 doi "https://doi.org/10.1117/1.jmi.6.2.024502" @default.
- W2952406314 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6566001" @default.
- W2952406314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31259199" @default.
- W2952406314 hasPublicationYear "2019" @default.
- W2952406314 type Work @default.
- W2952406314 sameAs 2952406314 @default.
- W2952406314 citedByCount "27" @default.
- W2952406314 countsByYear W29524063142019 @default.
- W2952406314 countsByYear W29524063142020 @default.
- W2952406314 countsByYear W29524063142021 @default.
- W2952406314 countsByYear W29524063142022 @default.
- W2952406314 countsByYear W29524063142023 @default.
- W2952406314 crossrefType "journal-article" @default.
- W2952406314 hasAuthorship W2952406314A5016940872 @default.
- W2952406314 hasAuthorship W2952406314A5017466934 @default.
- W2952406314 hasAuthorship W2952406314A5027642699 @default.
- W2952406314 hasAuthorship W2952406314A5049607541 @default.
- W2952406314 hasAuthorship W2952406314A5055473847 @default.
- W2952406314 hasAuthorship W2952406314A5059325659 @default.
- W2952406314 hasAuthorship W2952406314A5067908938 @default.
- W2952406314 hasAuthorship W2952406314A5078884487 @default.
- W2952406314 hasAuthorship W2952406314A5084865365 @default.
- W2952406314 hasBestOaLocation W29524063141 @default.
- W2952406314 hasConcept C105795698 @default.
- W2952406314 hasConcept C121332964 @default.
- W2952406314 hasConcept C126322002 @default.
- W2952406314 hasConcept C126838900 @default.
- W2952406314 hasConcept C138885662 @default.
- W2952406314 hasConcept C143409427 @default.
- W2952406314 hasConcept C151730666 @default.
- W2952406314 hasConcept C153180895 @default.
- W2952406314 hasConcept C154945302 @default.