Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952407756> ?p ?o ?g. }
- W2952407756 endingPage "321" @default.
- W2952407756 startingPage "312" @default.
- W2952407756 abstract "Major countries are installing Liquefied Natural Gas (LNG) terminals worldwide, as they transition towards carbon-free economies. Compressors are energy-intensive equipment in LNG import/export terminals. While reciprocating compressors are in wide use, models to estimate volumetric and energetic efficiencies do not exist, especially for those with suction valve unloaders. Furthermore, commercial process simulators such as Aspen HYSYS or Unisim are not equipped to simulate them rigorously. This paper presents a procedure to develop empirical models for predicting flow and power based on process insights and real operational data. It also demonstrates how these models can be embedded inside simulators to simulate compressor operations in both steady and dynamic modes. Real data from a BOG compressor train in an LNG regasification terminal are used to illustrate the full range of their applications. Finally, the suitability and efficacy of data-driven machine learning approaches are evaluated to show the superiority of proposed empirical models." @default.
- W2952407756 created "2019-06-27" @default.
- W2952407756 creator A5005830134 @default.
- W2952407756 creator A5049997031 @default.
- W2952407756 creator A5064828876 @default.
- W2952407756 creator A5065575547 @default.
- W2952407756 creator A5075142841 @default.
- W2952407756 creator A5078285803 @default.
- W2952407756 creator A5078445397 @default.
- W2952407756 date "2019-09-01" @default.
- W2952407756 modified "2023-10-11" @default.
- W2952407756 title "Towards energy-efficient LNG terminals: Modeling and simulation of reciprocating compressors" @default.
- W2952407756 cites W2002146816 @default.
- W2952407756 cites W2028070629 @default.
- W2952407756 cites W2046971164 @default.
- W2952407756 cites W2077491876 @default.
- W2952407756 cites W2091594101 @default.
- W2952407756 cites W2142635246 @default.
- W2952407756 cites W2151238122 @default.
- W2952407756 cites W2151637889 @default.
- W2952407756 cites W2252027348 @default.
- W2952407756 cites W2290506474 @default.
- W2952407756 cites W2437952351 @default.
- W2952407756 cites W2464220097 @default.
- W2952407756 cites W2520200698 @default.
- W2952407756 cites W2555341175 @default.
- W2952407756 cites W2575277697 @default.
- W2952407756 cites W2593644996 @default.
- W2952407756 cites W2769894978 @default.
- W2952407756 cites W2780277086 @default.
- W2952407756 cites W2787967564 @default.
- W2952407756 cites W2788540510 @default.
- W2952407756 cites W2810999757 @default.
- W2952407756 cites W2890519941 @default.
- W2952407756 cites W2904439457 @default.
- W2952407756 cites W2906052554 @default.
- W2952407756 cites W2921999797 @default.
- W2952407756 cites W4240951187 @default.
- W2952407756 cites W976466170 @default.
- W2952407756 doi "https://doi.org/10.1016/j.compchemeng.2019.06.013" @default.
- W2952407756 hasPublicationYear "2019" @default.
- W2952407756 type Work @default.
- W2952407756 sameAs 2952407756 @default.
- W2952407756 citedByCount "15" @default.
- W2952407756 countsByYear W29524077562019 @default.
- W2952407756 countsByYear W29524077562020 @default.
- W2952407756 countsByYear W29524077562021 @default.
- W2952407756 countsByYear W29524077562022 @default.
- W2952407756 countsByYear W29524077562023 @default.
- W2952407756 crossrefType "journal-article" @default.
- W2952407756 hasAuthorship W2952407756A5005830134 @default.
- W2952407756 hasAuthorship W2952407756A5049997031 @default.
- W2952407756 hasAuthorship W2952407756A5064828876 @default.
- W2952407756 hasAuthorship W2952407756A5065575547 @default.
- W2952407756 hasAuthorship W2952407756A5075142841 @default.
- W2952407756 hasAuthorship W2952407756A5078285803 @default.
- W2952407756 hasAuthorship W2952407756A5078445397 @default.
- W2952407756 hasConcept C111919701 @default.
- W2952407756 hasConcept C119599485 @default.
- W2952407756 hasConcept C127413603 @default.
- W2952407756 hasConcept C131097465 @default.
- W2952407756 hasConcept C14034172 @default.
- W2952407756 hasConcept C146978453 @default.
- W2952407756 hasConcept C15466294 @default.
- W2952407756 hasConcept C171146098 @default.
- W2952407756 hasConcept C204323151 @default.
- W2952407756 hasConcept C2742236 @default.
- W2952407756 hasConcept C41008148 @default.
- W2952407756 hasConcept C5395353 @default.
- W2952407756 hasConcept C548081761 @default.
- W2952407756 hasConcept C59427239 @default.
- W2952407756 hasConcept C78519656 @default.
- W2952407756 hasConcept C95277225 @default.
- W2952407756 hasConcept C98045186 @default.
- W2952407756 hasConceptScore W2952407756C111919701 @default.
- W2952407756 hasConceptScore W2952407756C119599485 @default.
- W2952407756 hasConceptScore W2952407756C127413603 @default.
- W2952407756 hasConceptScore W2952407756C131097465 @default.
- W2952407756 hasConceptScore W2952407756C14034172 @default.
- W2952407756 hasConceptScore W2952407756C146978453 @default.
- W2952407756 hasConceptScore W2952407756C15466294 @default.
- W2952407756 hasConceptScore W2952407756C171146098 @default.
- W2952407756 hasConceptScore W2952407756C204323151 @default.
- W2952407756 hasConceptScore W2952407756C2742236 @default.
- W2952407756 hasConceptScore W2952407756C41008148 @default.
- W2952407756 hasConceptScore W2952407756C5395353 @default.
- W2952407756 hasConceptScore W2952407756C548081761 @default.
- W2952407756 hasConceptScore W2952407756C59427239 @default.
- W2952407756 hasConceptScore W2952407756C78519656 @default.
- W2952407756 hasConceptScore W2952407756C95277225 @default.
- W2952407756 hasConceptScore W2952407756C98045186 @default.
- W2952407756 hasFunder F4320320671 @default.
- W2952407756 hasLocation W29524077561 @default.
- W2952407756 hasOpenAccess W2952407756 @default.
- W2952407756 hasPrimaryLocation W29524077561 @default.
- W2952407756 hasRelatedWork W1983916808 @default.
- W2952407756 hasRelatedWork W1991370967 @default.
- W2952407756 hasRelatedWork W2393750122 @default.