Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952474821> ?p ?o ?g. }
- W2952474821 endingPage "477" @default.
- W2952474821 startingPage "464" @default.
- W2952474821 abstract "Abstract The performance and reliability of aircraft engine are seriously affected by multiple failures induced by multi-physical loads. Multi-failure probabilistic design is an effective measure to estimate the multi-failure response traits and quantify the multi-failure risk for the improvement of component reliability. In this paper, we propose a neural network regression-distributed collaborative strategy (NNR-DCS) based on a developed two-step error control technique, to improve the efficiency and accuracy of multi-failure probabilistic analysis. We firstly mathematically model NNR-DCS and then introduce the corresponding multi-failure probabilistic framework. With respect to various failure modes such as deformation failure, stress failure and strain failure, the multi-failure probabilistic analysis of a turbine bladed disk is conducted to evaluate the proposed method. From this simulation, we gain the probabilistic distribution features, reliability degree and sensitivity degree of each failure mode and overall failure modes on turbine bladed disk, which provides a useful reference for improving the reliability and performance of aircraft engine. The comparison of methods (Monte Carlo method, RSM, DCRSM, DCFRM, NNR and NNR-DCS) shows that the proposed NNR-DCS holds high efficiency and accuracy for multi-failure probabilistic analysis. The efforts of this study offer an effective way for multi-failure evaluation from a probabilistic perspective and shed light on the multi-objective reliability-based design optimization of complex structures besides turbine bladed disk." @default.
- W2952474821 created "2019-06-27" @default.
- W2952474821 creator A5024196950 @default.
- W2952474821 creator A5061528544 @default.
- W2952474821 creator A5072813371 @default.
- W2952474821 date "2019-09-01" @default.
- W2952474821 modified "2023-10-17" @default.
- W2952474821 title "Multi-failure probabilistic design for turbine bladed disks using neural network regression with distributed collaborative strategy" @default.
- W2952474821 cites W1901822906 @default.
- W2952474821 cites W1965296059 @default.
- W2952474821 cites W1972298172 @default.
- W2952474821 cites W1980348099 @default.
- W2952474821 cites W1984912548 @default.
- W2952474821 cites W1991720640 @default.
- W2952474821 cites W2002471307 @default.
- W2952474821 cites W2010954274 @default.
- W2952474821 cites W2014715727 @default.
- W2952474821 cites W2014946109 @default.
- W2952474821 cites W2016864600 @default.
- W2952474821 cites W2017956739 @default.
- W2952474821 cites W2028031385 @default.
- W2952474821 cites W2029167403 @default.
- W2952474821 cites W2033613828 @default.
- W2952474821 cites W2042803411 @default.
- W2952474821 cites W2053615983 @default.
- W2952474821 cites W2085351890 @default.
- W2952474821 cites W2086495338 @default.
- W2952474821 cites W2088161553 @default.
- W2952474821 cites W2105192473 @default.
- W2952474821 cites W2138502822 @default.
- W2952474821 cites W2151471995 @default.
- W2952474821 cites W2156194072 @default.
- W2952474821 cites W2159453726 @default.
- W2952474821 cites W2172015040 @default.
- W2952474821 cites W2175473154 @default.
- W2952474821 cites W2207320530 @default.
- W2952474821 cites W2243249120 @default.
- W2952474821 cites W2297254173 @default.
- W2952474821 cites W2465088225 @default.
- W2952474821 cites W2474923962 @default.
- W2952474821 cites W2497000181 @default.
- W2952474821 cites W2580942568 @default.
- W2952474821 cites W2605865864 @default.
- W2952474821 cites W2612783399 @default.
- W2952474821 cites W2728997027 @default.
- W2952474821 cites W2740432090 @default.
- W2952474821 cites W2766571807 @default.
- W2952474821 cites W2791714450 @default.
- W2952474821 cites W2810860532 @default.
- W2952474821 cites W2825422202 @default.
- W2952474821 cites W2898030211 @default.
- W2952474821 cites W2898079602 @default.
- W2952474821 doi "https://doi.org/10.1016/j.ast.2019.06.026" @default.
- W2952474821 hasPublicationYear "2019" @default.
- W2952474821 type Work @default.
- W2952474821 sameAs 2952474821 @default.
- W2952474821 citedByCount "36" @default.
- W2952474821 countsByYear W29524748212019 @default.
- W2952474821 countsByYear W29524748212020 @default.
- W2952474821 countsByYear W29524748212021 @default.
- W2952474821 countsByYear W29524748212022 @default.
- W2952474821 countsByYear W29524748212023 @default.
- W2952474821 crossrefType "journal-article" @default.
- W2952474821 hasAuthorship W2952474821A5024196950 @default.
- W2952474821 hasAuthorship W2952474821A5061528544 @default.
- W2952474821 hasAuthorship W2952474821A5072813371 @default.
- W2952474821 hasConcept C105795698 @default.
- W2952474821 hasConcept C119857082 @default.
- W2952474821 hasConcept C127413603 @default.
- W2952474821 hasConcept C134342201 @default.
- W2952474821 hasConcept C146978453 @default.
- W2952474821 hasConcept C152877465 @default.
- W2952474821 hasConcept C154945302 @default.
- W2952474821 hasConcept C175202392 @default.
- W2952474821 hasConcept C2778449969 @default.
- W2952474821 hasConcept C33923547 @default.
- W2952474821 hasConcept C41008148 @default.
- W2952474821 hasConcept C49937458 @default.
- W2952474821 hasConcept C50644808 @default.
- W2952474821 hasConcept C83546350 @default.
- W2952474821 hasConceptScore W2952474821C105795698 @default.
- W2952474821 hasConceptScore W2952474821C119857082 @default.
- W2952474821 hasConceptScore W2952474821C127413603 @default.
- W2952474821 hasConceptScore W2952474821C134342201 @default.
- W2952474821 hasConceptScore W2952474821C146978453 @default.
- W2952474821 hasConceptScore W2952474821C152877465 @default.
- W2952474821 hasConceptScore W2952474821C154945302 @default.
- W2952474821 hasConceptScore W2952474821C175202392 @default.
- W2952474821 hasConceptScore W2952474821C2778449969 @default.
- W2952474821 hasConceptScore W2952474821C33923547 @default.
- W2952474821 hasConceptScore W2952474821C41008148 @default.
- W2952474821 hasConceptScore W2952474821C49937458 @default.
- W2952474821 hasConceptScore W2952474821C50644808 @default.
- W2952474821 hasConceptScore W2952474821C83546350 @default.
- W2952474821 hasFunder F4320321001 @default.
- W2952474821 hasLocation W29524748211 @default.
- W2952474821 hasOpenAccess W2952474821 @default.
- W2952474821 hasPrimaryLocation W29524748211 @default.