Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952486180> ?p ?o ?g. }
- W2952486180 abstract "Currently, a growing number of health consumers are asking health-related questions online, at any time and from anywhere, which effectively lowers the cost of health care. The most common approach is using online health expert question-answering (HQA) services, as health consumers are more willing to trust answers from professional physicians. However, these answers can be of varying quality depending on circumstance. In addition, as the available HQA services grow, how to predict the answer quality of HQA services via machine learning becomes increasingly important and challenging. In an HQA service, answers are normally short texts, which are severely affected by the data sparsity problem. Furthermore, HQA services lack community features such as best answer and user votes. Therefore, the wisdom of the crowd is not available to rate answer quality. To address these problems, in this paper, the prediction of HQA answer quality is defined as a classification task. First, based on the characteristics of HQA services and feedback from medical experts, a standard for HQA service answer quality evaluation is defined. Next, based on the characteristics of HQA services, several novel non-textual features are proposed, including surface linguistic features and social features. Finally, a deep belief network (DBN)-based HQA answer quality prediction framework is proposed to predict the quality of answers by learning the high-level hidden semantic representation from the physicians' answers. Our results prove that the proposed framework overcomes the problem of overly sparse textual features in short text answers and effectively identifies high-quality answers." @default.
- W2952486180 created "2019-06-27" @default.
- W2952486180 creator A5003111136 @default.
- W2952486180 creator A5017171775 @default.
- W2952486180 creator A5045397113 @default.
- W2952486180 creator A5047305591 @default.
- W2952486180 creator A5081662508 @default.
- W2952486180 date "2016-12-21" @default.
- W2952486180 modified "2023-09-27" @default.
- W2952486180 title "A deep learning approach for predicting the quality of online health expert question-answering services" @default.
- W2952486180 cites W117381027 @default.
- W2952486180 cites W138745259 @default.
- W2952486180 cites W1495384519 @default.
- W2952486180 cites W1575184037 @default.
- W2952486180 cites W1714665356 @default.
- W2952486180 cites W1813659000 @default.
- W2952486180 cites W1832693441 @default.
- W2952486180 cites W1854214752 @default.
- W2952486180 cites W1880262756 @default.
- W2952486180 cites W1978394996 @default.
- W2952486180 cites W1979682439 @default.
- W2952486180 cites W1982865616 @default.
- W2952486180 cites W2004104731 @default.
- W2952486180 cites W2016258134 @default.
- W2952486180 cites W2025895610 @default.
- W2952486180 cites W2032305183 @default.
- W2952486180 cites W2033620665 @default.
- W2952486180 cites W2037858832 @default.
- W2952486180 cites W2054965013 @default.
- W2952486180 cites W2057415299 @default.
- W2952486180 cites W2059993991 @default.
- W2952486180 cites W2062935223 @default.
- W2952486180 cites W2063339671 @default.
- W2952486180 cites W2083022762 @default.
- W2952486180 cites W2085834645 @default.
- W2952486180 cites W2087227067 @default.
- W2952486180 cites W2088096747 @default.
- W2952486180 cites W2092636824 @default.
- W2952486180 cites W2094286023 @default.
- W2952486180 cites W2100495367 @default.
- W2952486180 cites W2101234009 @default.
- W2952486180 cites W2102154902 @default.
- W2952486180 cites W2102956348 @default.
- W2952486180 cites W2103256129 @default.
- W2952486180 cites W2104585898 @default.
- W2952486180 cites W2110798204 @default.
- W2952486180 cites W2116064496 @default.
- W2952486180 cites W2116875384 @default.
- W2952486180 cites W2118585731 @default.
- W2952486180 cites W2123855421 @default.
- W2952486180 cites W2132613313 @default.
- W2952486180 cites W2134308336 @default.
- W2952486180 cites W2135400538 @default.
- W2952486180 cites W2136219771 @default.
- W2952486180 cites W2136922672 @default.
- W2952486180 cites W2138621811 @default.
- W2952486180 cites W2140495700 @default.
- W2952486180 cites W2143337100 @default.
- W2952486180 cites W2153635508 @default.
- W2952486180 cites W2159133636 @default.
- W2952486180 cites W2161152375 @default.
- W2952486180 cites W2161443453 @default.
- W2952486180 cites W2163227493 @default.
- W2952486180 cites W2165179003 @default.
- W2952486180 cites W2170722669 @default.
- W2952486180 cites W2171836785 @default.
- W2952486180 cites W2193899264 @default.
- W2952486180 cites W2243910093 @default.
- W2952486180 cites W2253315254 @default.
- W2952486180 cites W2282146481 @default.
- W2952486180 cites W2295615372 @default.
- W2952486180 cites W2343957433 @default.
- W2952486180 cites W2375417888 @default.
- W2952486180 cites W27263903 @default.
- W2952486180 cites W2913932916 @default.
- W2952486180 cites W2963457143 @default.
- W2952486180 doi "https://doi.org/10.48550/arxiv.1612.07040" @default.
- W2952486180 hasPublicationYear "2016" @default.
- W2952486180 type Work @default.
- W2952486180 sameAs 2952486180 @default.
- W2952486180 citedByCount "0" @default.
- W2952486180 crossrefType "posted-content" @default.
- W2952486180 hasAuthorship W2952486180A5003111136 @default.
- W2952486180 hasAuthorship W2952486180A5017171775 @default.
- W2952486180 hasAuthorship W2952486180A5045397113 @default.
- W2952486180 hasAuthorship W2952486180A5047305591 @default.
- W2952486180 hasAuthorship W2952486180A5081662508 @default.
- W2952486180 hasBestOaLocation W29524861801 @default.
- W2952486180 hasConcept C108583219 @default.
- W2952486180 hasConcept C111472728 @default.
- W2952486180 hasConcept C119857082 @default.
- W2952486180 hasConcept C136264566 @default.
- W2952486180 hasConcept C136764020 @default.
- W2952486180 hasConcept C138885662 @default.
- W2952486180 hasConcept C154945302 @default.
- W2952486180 hasConcept C160735492 @default.
- W2952486180 hasConcept C162324750 @default.
- W2952486180 hasConcept C17744445 @default.
- W2952486180 hasConcept C187736073 @default.
- W2952486180 hasConcept C199539241 @default.