Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952487930> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2952487930 abstract "In this paper, we study the problem of hybrid language modeling, that is using models which can predict both characters and larger units such as character ngrams or words. Using such models, multiple potential segmentations usually exist for a given string, for example one using words and one using characters only. Thus, the probability of a string is the sum of the probabilities of all the possible segmentations. Here, we show how it is possible to marginalize over the segmentations efficiently, in order to compute the true probability of a sequence. We apply our technique on three datasets, comprising seven languages, showing improvements over a strong character level language model." @default.
- W2952487930 created "2019-06-27" @default.
- W2952487930 creator A5035420035 @default.
- W2952487930 creator A5041693326 @default.
- W2952487930 creator A5060255128 @default.
- W2952487930 creator A5069316249 @default.
- W2952487930 date "2019-01-01" @default.
- W2952487930 modified "2023-09-27" @default.
- W2952487930 title "Training Hybrid Language Models by Marginalizing over Segmentations" @default.
- W2952487930 cites W179875071 @default.
- W2952487930 cites W1966812932 @default.
- W2952487930 cites W2132339004 @default.
- W2952487930 cites W2146502635 @default.
- W2952487930 cites W2510842514 @default.
- W2952487930 cites W2525246036 @default.
- W2952487930 cites W2609370997 @default.
- W2952487930 cites W2727642071 @default.
- W2952487930 cites W2906625520 @default.
- W2952487930 cites W2962784628 @default.
- W2952487930 cites W2963077280 @default.
- W2952487930 cites W2963088785 @default.
- W2952487930 cites W2963304263 @default.
- W2952487930 cites W2963357986 @default.
- W2952487930 cites W2963403868 @default.
- W2952487930 cites W2963494889 @default.
- W2952487930 cites W2963831883 @default.
- W2952487930 cites W2963983719 @default.
- W2952487930 cites W2964325845 @default.
- W2952487930 doi "https://doi.org/10.18653/v1/p19-1143" @default.
- W2952487930 hasPublicationYear "2019" @default.
- W2952487930 type Work @default.
- W2952487930 sameAs 2952487930 @default.
- W2952487930 citedByCount "9" @default.
- W2952487930 countsByYear W29524879302019 @default.
- W2952487930 countsByYear W29524879302020 @default.
- W2952487930 countsByYear W29524879302021 @default.
- W2952487930 countsByYear W29524879302022 @default.
- W2952487930 countsByYear W29524879302023 @default.
- W2952487930 crossrefType "proceedings-article" @default.
- W2952487930 hasAuthorship W2952487930A5035420035 @default.
- W2952487930 hasAuthorship W2952487930A5041693326 @default.
- W2952487930 hasAuthorship W2952487930A5060255128 @default.
- W2952487930 hasAuthorship W2952487930A5069316249 @default.
- W2952487930 hasBestOaLocation W29524879301 @default.
- W2952487930 hasConcept C137293760 @default.
- W2952487930 hasConcept C154945302 @default.
- W2952487930 hasConcept C157486923 @default.
- W2952487930 hasConcept C204321447 @default.
- W2952487930 hasConcept C2524010 @default.
- W2952487930 hasConcept C2778112365 @default.
- W2952487930 hasConcept C2780861071 @default.
- W2952487930 hasConcept C33923547 @default.
- W2952487930 hasConcept C37914503 @default.
- W2952487930 hasConcept C41008148 @default.
- W2952487930 hasConcept C54355233 @default.
- W2952487930 hasConcept C86803240 @default.
- W2952487930 hasConceptScore W2952487930C137293760 @default.
- W2952487930 hasConceptScore W2952487930C154945302 @default.
- W2952487930 hasConceptScore W2952487930C157486923 @default.
- W2952487930 hasConceptScore W2952487930C204321447 @default.
- W2952487930 hasConceptScore W2952487930C2524010 @default.
- W2952487930 hasConceptScore W2952487930C2778112365 @default.
- W2952487930 hasConceptScore W2952487930C2780861071 @default.
- W2952487930 hasConceptScore W2952487930C33923547 @default.
- W2952487930 hasConceptScore W2952487930C37914503 @default.
- W2952487930 hasConceptScore W2952487930C41008148 @default.
- W2952487930 hasConceptScore W2952487930C54355233 @default.
- W2952487930 hasConceptScore W2952487930C86803240 @default.
- W2952487930 hasLocation W29524879301 @default.
- W2952487930 hasOpenAccess W2952487930 @default.
- W2952487930 hasPrimaryLocation W29524879301 @default.
- W2952487930 hasRelatedWork W1989705153 @default.
- W2952487930 hasRelatedWork W2008674723 @default.
- W2952487930 hasRelatedWork W2293457016 @default.
- W2952487930 hasRelatedWork W2359001871 @default.
- W2952487930 hasRelatedWork W2496228846 @default.
- W2952487930 hasRelatedWork W2789919619 @default.
- W2952487930 hasRelatedWork W2896411932 @default.
- W2952487930 hasRelatedWork W2983142011 @default.
- W2952487930 hasRelatedWork W4288804510 @default.
- W2952487930 hasRelatedWork W1551406738 @default.
- W2952487930 isParatext "false" @default.
- W2952487930 isRetracted "false" @default.
- W2952487930 magId "2952487930" @default.
- W2952487930 workType "article" @default.