Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952508710> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2952508710 abstract "The Bag-of-Words (BoW) representation is well applied to recent state-of-the-art image retrieval works. Typically, multiple vocabularies are generated to correct quantization artifacts and improve recall. However, this routine is corrupted by vocabulary correlation, i.e., overlapping among different vocabularies. Vocabulary correlation leads to an over-counting of the indexed features in the overlapped area, or the intersection set, thus compromising the retrieval accuracy. In order to address the correlation problem while preserve the benefit of high recall, this paper proposes a Bayes merging approach to down-weight the indexed features in the intersection set. Through explicitly modeling the correlation problem in a probabilistic view, a joint similarity on both image- and feature-level is estimated for the indexed features in the intersection set. We evaluate our method through extensive experiments on three benchmark datasets. Albeit simple, Bayes merging can be well applied in various merging tasks, and consistently improves the baselines on multi-vocabulary merging. Moreover, Bayes merging is efficient in terms of both time and memory cost, and yields competitive performance compared with the state-of-the-art methods." @default.
- W2952508710 created "2019-06-27" @default.
- W2952508710 creator A5030965866 @default.
- W2952508710 creator A5046805800 @default.
- W2952508710 creator A5047455588 @default.
- W2952508710 creator A5053773821 @default.
- W2952508710 date "2014-03-02" @default.
- W2952508710 modified "2023-10-16" @default.
- W2952508710 title "Bayes Merging of Multiple Vocabularies for Scalable Image Retrieval" @default.
- W2952508710 cites W1556531089 @default.
- W2952508710 cites W1679894842 @default.
- W2952508710 cites W1975399404 @default.
- W2952508710 cites W1979931042 @default.
- W2952508710 cites W1981209770 @default.
- W2952508710 cites W2031332477 @default.
- W2952508710 cites W2039742379 @default.
- W2952508710 cites W2044284589 @default.
- W2952508710 cites W2065296697 @default.
- W2952508710 cites W2068143350 @default.
- W2952508710 cites W2088866137 @default.
- W2952508710 cites W2103660993 @default.
- W2952508710 cites W2104807029 @default.
- W2952508710 cites W2104929264 @default.
- W2952508710 cites W2109761506 @default.
- W2952508710 cites W2118355530 @default.
- W2952508710 cites W2122557169 @default.
- W2952508710 cites W2128017662 @default.
- W2952508710 cites W2130230179 @default.
- W2952508710 cites W2141362318 @default.
- W2952508710 cites W2151103935 @default.
- W2952508710 cites W2156365280 @default.
- W2952508710 cites W1493350572 @default.
- W2952508710 doi "https://doi.org/10.48550/arxiv.1403.0284" @default.
- W2952508710 hasPublicationYear "2014" @default.
- W2952508710 type Work @default.
- W2952508710 sameAs 2952508710 @default.
- W2952508710 citedByCount "0" @default.
- W2952508710 crossrefType "posted-content" @default.
- W2952508710 hasAuthorship W2952508710A5030965866 @default.
- W2952508710 hasAuthorship W2952508710A5046805800 @default.
- W2952508710 hasAuthorship W2952508710A5047455588 @default.
- W2952508710 hasAuthorship W2952508710A5053773821 @default.
- W2952508710 hasBestOaLocation W29525087101 @default.
- W2952508710 hasConcept C107673813 @default.
- W2952508710 hasConcept C119857082 @default.
- W2952508710 hasConcept C124101348 @default.
- W2952508710 hasConcept C13672336 @default.
- W2952508710 hasConcept C138885662 @default.
- W2952508710 hasConcept C153180895 @default.
- W2952508710 hasConcept C154945302 @default.
- W2952508710 hasConcept C177264268 @default.
- W2952508710 hasConcept C199360897 @default.
- W2952508710 hasConcept C207201462 @default.
- W2952508710 hasConcept C2776401178 @default.
- W2952508710 hasConcept C2777601683 @default.
- W2952508710 hasConcept C41008148 @default.
- W2952508710 hasConcept C41895202 @default.
- W2952508710 hasConcept C48044578 @default.
- W2952508710 hasConcept C77088390 @default.
- W2952508710 hasConcept C97931131 @default.
- W2952508710 hasConceptScore W2952508710C107673813 @default.
- W2952508710 hasConceptScore W2952508710C119857082 @default.
- W2952508710 hasConceptScore W2952508710C124101348 @default.
- W2952508710 hasConceptScore W2952508710C13672336 @default.
- W2952508710 hasConceptScore W2952508710C138885662 @default.
- W2952508710 hasConceptScore W2952508710C153180895 @default.
- W2952508710 hasConceptScore W2952508710C154945302 @default.
- W2952508710 hasConceptScore W2952508710C177264268 @default.
- W2952508710 hasConceptScore W2952508710C199360897 @default.
- W2952508710 hasConceptScore W2952508710C207201462 @default.
- W2952508710 hasConceptScore W2952508710C2776401178 @default.
- W2952508710 hasConceptScore W2952508710C2777601683 @default.
- W2952508710 hasConceptScore W2952508710C41008148 @default.
- W2952508710 hasConceptScore W2952508710C41895202 @default.
- W2952508710 hasConceptScore W2952508710C48044578 @default.
- W2952508710 hasConceptScore W2952508710C77088390 @default.
- W2952508710 hasConceptScore W2952508710C97931131 @default.
- W2952508710 hasLocation W29525087101 @default.
- W2952508710 hasLocation W29525087102 @default.
- W2952508710 hasOpenAccess W2952508710 @default.
- W2952508710 hasPrimaryLocation W29525087101 @default.
- W2952508710 hasRelatedWork W1979068194 @default.
- W2952508710 hasRelatedWork W2024160000 @default.
- W2952508710 hasRelatedWork W2061273563 @default.
- W2952508710 hasRelatedWork W2285052147 @default.
- W2952508710 hasRelatedWork W2729514902 @default.
- W2952508710 hasRelatedWork W2743258233 @default.
- W2952508710 hasRelatedWork W2773500201 @default.
- W2952508710 hasRelatedWork W2970216048 @default.
- W2952508710 hasRelatedWork W2998168123 @default.
- W2952508710 hasRelatedWork W4287995534 @default.
- W2952508710 isParatext "false" @default.
- W2952508710 isRetracted "false" @default.
- W2952508710 magId "2952508710" @default.
- W2952508710 workType "article" @default.