Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952509531> ?p ?o ?g. }
- W2952509531 endingPage "3984" @default.
- W2952509531 startingPage "3974" @default.
- W2952509531 abstract "Purpose Transvaginal ultrasound imaging provides useful information for diagnosing endometrial pathologies and reproductive health. Endometrium segmentation in transvaginal ultrasound (TVUS) images is very challenging due to ambiguous boundaries and heterogeneous textures. In this study, we developed a new segmentation framework which provides robust segmentation against ambiguous boundaries and heterogeneous textures of TVUS images. Methods To achieve endometrium segmentation from TVUS images, we propose a new segmentation framework with a discriminator guided by four key points of the endometrium (namely, the endometrium cavity tip, the internal os of the cervix, and the two thickest points between the two basal layers on the anterior and posterior uterine walls). The key points of the endometrium are defined as meaningful points that are related to the characteristics of the endometrial morphology, namely the length and thickness of the endometrium. In the proposed segmentation framework, the key‐point discriminator distinguishes a predicted segmentation map from a ground‐truth segmentation map according to the key‐point maps. Meanwhile, the endometrium segmentation network predicts accurate segmentation results that the key‐point discriminator cannot discriminate. In this adversarial way, the key‐point information containing endometrial morphology characteristics is effectively incorporated in the segmentation network. The segmentation network can accurately find the segmentation boundary while the key‐point discriminator learns the shape distribution of the endometrium. Moreover, the endometrium segmentation can be robust to the heterogeneous texture of the endometrium. We conducted an experiment on a TVUS dataset that contained 3,372 sagittal TVUS images and the corresponding key points. The dataset was collected by three hospitals (Ewha Woman’s University School of Medicine, Asan Medical Center, and Yonsei University College of Medicine) with the approval of the three hospitals’ Institutional Review Board. For verification, fivefold cross‐validation was performed. Result The proposed key‐point discriminator improved the performance of the endometrium segmentation, achieving 82.67 % for the Dice coefficient and 70.46% for the Jaccard coefficient. In comparison, on the TVUS images UNet, showed 58.69 % for the Dice coefficient and 41.59 % for the Jaccard coefficient. The qualitative performance of the endometrium segmentation was also improved over the conventional deep learning segmentation networks. Our experimental results indicated robust segmentation by the proposed method on TVUS images with heterogeneous texture and unclear boundary. In addition, the effect of the key‐point discriminator was verified by an ablation study. Conclusion We proposed a key‐point discriminator to train a segmentation network for robust segmentation of the endometrium with TVUS images. By utilizing the key‐point information, the proposed method showed more reliable and accurate segmentation performance and outperformed the conventional segmentation networks both in qualitative and quantitative comparisons." @default.
- W2952509531 created "2019-06-27" @default.
- W2952509531 creator A5036508399 @default.
- W2952509531 creator A5038798134 @default.
- W2952509531 creator A5039405068 @default.
- W2952509531 creator A5041992609 @default.
- W2952509531 creator A5069167592 @default.
- W2952509531 creator A5083558190 @default.
- W2952509531 creator A5086359953 @default.
- W2952509531 creator A5089050147 @default.
- W2952509531 date "2019-07-31" @default.
- W2952509531 modified "2023-10-12" @default.
- W2952509531 title "Endometrium segmentation on transvaginal ultrasound image using key‐point discriminator" @default.
- W2952509531 cites W1745334888 @default.
- W2952509531 cites W180744284 @default.
- W2952509531 cites W1901129140 @default.
- W2952509531 cites W1903029394 @default.
- W2952509531 cites W2074496458 @default.
- W2952509531 cites W2080660711 @default.
- W2952509531 cites W2088394369 @default.
- W2952509531 cites W2137074296 @default.
- W2952509531 cites W2142533952 @default.
- W2952509531 cites W2174270737 @default.
- W2952509531 cites W2263886175 @default.
- W2952509531 cites W2395553436 @default.
- W2952509531 cites W2412782625 @default.
- W2952509531 cites W2434308487 @default.
- W2952509531 cites W2517954747 @default.
- W2952509531 cites W2561022822 @default.
- W2952509531 cites W2573334707 @default.
- W2952509531 cites W2757657459 @default.
- W2952509531 cites W2898197178 @default.
- W2952509531 cites W2899912692 @default.
- W2952509531 cites W2899946757 @default.
- W2952509531 cites W2962914239 @default.
- W2952509531 cites W2963881378 @default.
- W2952509531 cites W2964309882 @default.
- W2952509531 doi "https://doi.org/10.1002/mp.13677" @default.
- W2952509531 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31230366" @default.
- W2952509531 hasPublicationYear "2019" @default.
- W2952509531 type Work @default.
- W2952509531 sameAs 2952509531 @default.
- W2952509531 citedByCount "17" @default.
- W2952509531 countsByYear W29525095312020 @default.
- W2952509531 countsByYear W29525095312021 @default.
- W2952509531 countsByYear W29525095312022 @default.
- W2952509531 countsByYear W29525095312023 @default.
- W2952509531 crossrefType "journal-article" @default.
- W2952509531 hasAuthorship W2952509531A5036508399 @default.
- W2952509531 hasAuthorship W2952509531A5038798134 @default.
- W2952509531 hasAuthorship W2952509531A5039405068 @default.
- W2952509531 hasAuthorship W2952509531A5041992609 @default.
- W2952509531 hasAuthorship W2952509531A5069167592 @default.
- W2952509531 hasAuthorship W2952509531A5083558190 @default.
- W2952509531 hasAuthorship W2952509531A5086359953 @default.
- W2952509531 hasAuthorship W2952509531A5089050147 @default.
- W2952509531 hasConcept C124504099 @default.
- W2952509531 hasConcept C131872663 @default.
- W2952509531 hasConcept C153180895 @default.
- W2952509531 hasConcept C154945302 @default.
- W2952509531 hasConcept C2779742232 @default.
- W2952509531 hasConcept C2779803651 @default.
- W2952509531 hasConcept C31972630 @default.
- W2952509531 hasConcept C41008148 @default.
- W2952509531 hasConcept C65885262 @default.
- W2952509531 hasConcept C71924100 @default.
- W2952509531 hasConcept C76155785 @default.
- W2952509531 hasConcept C89600930 @default.
- W2952509531 hasConcept C94915269 @default.
- W2952509531 hasConceptScore W2952509531C124504099 @default.
- W2952509531 hasConceptScore W2952509531C131872663 @default.
- W2952509531 hasConceptScore W2952509531C153180895 @default.
- W2952509531 hasConceptScore W2952509531C154945302 @default.
- W2952509531 hasConceptScore W2952509531C2779742232 @default.
- W2952509531 hasConceptScore W2952509531C2779803651 @default.
- W2952509531 hasConceptScore W2952509531C31972630 @default.
- W2952509531 hasConceptScore W2952509531C41008148 @default.
- W2952509531 hasConceptScore W2952509531C65885262 @default.
- W2952509531 hasConceptScore W2952509531C71924100 @default.
- W2952509531 hasConceptScore W2952509531C76155785 @default.
- W2952509531 hasConceptScore W2952509531C89600930 @default.
- W2952509531 hasConceptScore W2952509531C94915269 @default.
- W2952509531 hasIssue "9" @default.
- W2952509531 hasLocation W29525095311 @default.
- W2952509531 hasLocation W29525095312 @default.
- W2952509531 hasOpenAccess W2952509531 @default.
- W2952509531 hasPrimaryLocation W29525095311 @default.
- W2952509531 hasRelatedWork W134976887 @default.
- W2952509531 hasRelatedWork W1669643531 @default.
- W2952509531 hasRelatedWork W1982826852 @default.
- W2952509531 hasRelatedWork W2005437358 @default.
- W2952509531 hasRelatedWork W2110230079 @default.
- W2952509531 hasRelatedWork W2384989255 @default.
- W2952509531 hasRelatedWork W2517104666 @default.
- W2952509531 hasRelatedWork W2549936415 @default.
- W2952509531 hasRelatedWork W2566648451 @default.
- W2952509531 hasRelatedWork W1967061043 @default.
- W2952509531 hasVolume "46" @default.