Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952534423> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2952534423 abstract "Random walks on expander graphs were thoroughly studied, with the important motivation that, under some natural conditions, these walks mix quickly and provide an efficient method of sampling the vertices of a graph. Alon, Benjamini, Lubetzky and Sodin studied non-backtracking random walks on regular graphs, and showed that their mixing rate may be up to twice as fast as that of the simple random walk. As an application, they showed that the maximal number of visits to a vertex, made by a non-backtracking random walk of length $n$ on a high-girth $n$-vertex regular expander, is typically $(1+o(1))frac{log n}{loglog n}$, as in the case of the balls and bins experiment. They further asked whether one can establish the precise distribution of the visits such a walk makes. In this work, we answer the above question by combining a generalized form of Brun's sieve with some extensions of the ideas in Alon et al. Let $N_t$ denote the number of vertices visited precisely $t$ times by a non-backtracking random walk of length $n$ on a regular $n$-vertex expander of fixed degree and girth $g$. We prove that if $g=omega(1)$, then for any fixed $t$, $N_t/n$ is typically $frac{1}{mathrm{e}t!}+o(1)$. Furthermore, if $g=Omega(loglog n)$, then $N_t/n$ is typically $frac{1+o(1)}{mathrm{e}t!}$ uniformly on all $t leq (1-o(1))frac{log n}{loglog n}$ and 0 for all $t geq (1+o(1))frac{log n}{loglog n}$. In particular, we obtain the above result on the typical maximal number of visits to a single vertex, with an improved threshold window. The essence of the proof lies in showing that variables counting the number of visits to a set of sufficiently distant vertices are asymptotically independent Poisson variables." @default.
- W2952534423 created "2019-06-27" @default.
- W2952534423 creator A5047720470 @default.
- W2952534423 creator A5083469386 @default.
- W2952534423 date "2007-05-07" @default.
- W2952534423 modified "2023-09-27" @default.
- W2952534423 title "Poisson approximation for non-backtracking random walks" @default.
- W2952534423 cites W1514107797 @default.
- W2952534423 cites W1973678899 @default.
- W2952534423 cites W1996196886 @default.
- W2952534423 cites W2033281046 @default.
- W2952534423 cites W2061297447 @default.
- W2952534423 cites W2156184725 @default.
- W2952534423 cites W2166162093 @default.
- W2952534423 cites W2751862591 @default.
- W2952534423 cites W3100428187 @default.
- W2952534423 cites W3144881883 @default.
- W2952534423 hasPublicationYear "2007" @default.
- W2952534423 type Work @default.
- W2952534423 sameAs 2952534423 @default.
- W2952534423 citedByCount "0" @default.
- W2952534423 crossrefType "posted-content" @default.
- W2952534423 hasAuthorship W2952534423A5047720470 @default.
- W2952534423 hasAuthorship W2952534423A5083469386 @default.
- W2952534423 hasConcept C105795698 @default.
- W2952534423 hasConcept C11413529 @default.
- W2952534423 hasConcept C114614502 @default.
- W2952534423 hasConcept C118615104 @default.
- W2952534423 hasConcept C121194460 @default.
- W2952534423 hasConcept C121332964 @default.
- W2952534423 hasConcept C132525143 @default.
- W2952534423 hasConcept C154547637 @default.
- W2952534423 hasConcept C156884757 @default.
- W2952534423 hasConcept C2779557605 @default.
- W2952534423 hasConcept C33923547 @default.
- W2952534423 hasConcept C62520636 @default.
- W2952534423 hasConcept C63553672 @default.
- W2952534423 hasConcept C80899671 @default.
- W2952534423 hasConceptScore W2952534423C105795698 @default.
- W2952534423 hasConceptScore W2952534423C11413529 @default.
- W2952534423 hasConceptScore W2952534423C114614502 @default.
- W2952534423 hasConceptScore W2952534423C118615104 @default.
- W2952534423 hasConceptScore W2952534423C121194460 @default.
- W2952534423 hasConceptScore W2952534423C121332964 @default.
- W2952534423 hasConceptScore W2952534423C132525143 @default.
- W2952534423 hasConceptScore W2952534423C154547637 @default.
- W2952534423 hasConceptScore W2952534423C156884757 @default.
- W2952534423 hasConceptScore W2952534423C2779557605 @default.
- W2952534423 hasConceptScore W2952534423C33923547 @default.
- W2952534423 hasConceptScore W2952534423C62520636 @default.
- W2952534423 hasConceptScore W2952534423C63553672 @default.
- W2952534423 hasConceptScore W2952534423C80899671 @default.
- W2952534423 hasLocation W29525344231 @default.
- W2952534423 hasOpenAccess W2952534423 @default.
- W2952534423 hasPrimaryLocation W29525344231 @default.
- W2952534423 hasRelatedWork W1554342441 @default.
- W2952534423 hasRelatedWork W1579884315 @default.
- W2952534423 hasRelatedWork W1978769275 @default.
- W2952534423 hasRelatedWork W2030932831 @default.
- W2952534423 hasRelatedWork W2037712571 @default.
- W2952534423 hasRelatedWork W2049562387 @default.
- W2952534423 hasRelatedWork W2064513813 @default.
- W2952534423 hasRelatedWork W2081891996 @default.
- W2952534423 hasRelatedWork W2219699678 @default.
- W2952534423 hasRelatedWork W2221715079 @default.
- W2952534423 hasRelatedWork W2560845071 @default.
- W2952534423 hasRelatedWork W2613424187 @default.
- W2952534423 hasRelatedWork W2909916367 @default.
- W2952534423 hasRelatedWork W2910633281 @default.
- W2952534423 hasRelatedWork W2949491420 @default.
- W2952534423 hasRelatedWork W2962786917 @default.
- W2952534423 hasRelatedWork W2963859154 @default.
- W2952534423 hasRelatedWork W3016615696 @default.
- W2952534423 hasRelatedWork W3099038112 @default.
- W2952534423 hasRelatedWork W3100428187 @default.
- W2952534423 isParatext "false" @default.
- W2952534423 isRetracted "false" @default.
- W2952534423 magId "2952534423" @default.
- W2952534423 workType "article" @default.