Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952540014> ?p ?o ?g. }
- W2952540014 abstract "In the era of precision oncology and publicly available datasets, the amount of information available for each patient case has dramatically increased. From clinical variables and PET-CT radiomics measures to DNA-variant and RNA expression profiles, such a wide variety of data presents a multitude of challenges. Large clinical datasets are subject to sparsely and/or inconsistently populated fields. Corresponding sequencing profiles can suffer from the problem of high-dimensionality, where making useful inferences can be difficult without correspondingly large numbers of instances. In this paper we report a novel deployment of machine learning techniques to handle data sparsity and high dimensionality, while evaluating potential biomarkers in the form of unsupervised transformations of RNA data. We apply preprocessing, MICE imputation, and sparse principal component analysis (SPCA) to improve the usability of more than 500 patient cases from the TCGA-HNSC dataset for enhancing future oncological decision support for Head and Neck Squamous Cell Carcinoma (HNSCC). Imputation was shown to improve prognostic ability of sparse clinical treatment variables. SPCA transformation of RNA expression variables reduced runtime for RNA-based models, though changes to classifier performance were not significant. Gene ontology enrichment analysis of gene sets associated with individual sparse principal components (SPCs) are also reported, showing that both high- and low-importance SPCs were associated with cell death pathways, though the high-importance gene sets were found to be associated with a wider variety of cancer-related biological processes. MICE imputation allowed us to impute missing values for clinically informative features, improving their overall importance for predicting two-year recurrence-free survival by incorporating variance from other clinical variables. Dimensionality reduction of RNA expression profiles via SPCA reduced both computation cost and model training/evaluation time without affecting classifier performance, allowing researchers to obtain experimental results much more quickly. SPCA simultaneously provided a convenient avenue for consideration of biological context via gene ontology enrichment analysis." @default.
- W2952540014 created "2019-06-27" @default.
- W2952540014 creator A5005978603 @default.
- W2952540014 creator A5008623453 @default.
- W2952540014 creator A5011603476 @default.
- W2952540014 creator A5024545318 @default.
- W2952540014 creator A5024965387 @default.
- W2952540014 creator A5040980527 @default.
- W2952540014 creator A5043024040 @default.
- W2952540014 creator A5064945246 @default.
- W2952540014 date "2019-06-17" @default.
- W2952540014 modified "2023-10-09" @default.
- W2952540014 title "Machine learning with the TCGA-HNSC dataset: improving usability by addressing inconsistency, sparsity, and high-dimensionality" @default.
- W2952540014 cites W1875061881 @default.
- W2952540014 cites W1965973862 @default.
- W2952540014 cites W1975900269 @default.
- W2952540014 cites W2054440265 @default.
- W2952540014 cites W2103017472 @default.
- W2952540014 cites W2119387367 @default.
- W2952540014 cites W2143481518 @default.
- W2952540014 cites W2154290668 @default.
- W2952540014 cites W2278608073 @default.
- W2952540014 cites W2310001042 @default.
- W2952540014 cites W2521492299 @default.
- W2952540014 cites W2528985990 @default.
- W2952540014 cites W2559466477 @default.
- W2952540014 cites W2566236583 @default.
- W2952540014 cites W2603489941 @default.
- W2952540014 cites W2604808360 @default.
- W2952540014 cites W2607235620 @default.
- W2952540014 cites W2613409042 @default.
- W2952540014 cites W2783808413 @default.
- W2952540014 cites W2791172551 @default.
- W2952540014 cites W2806138331 @default.
- W2952540014 cites W2951209146 @default.
- W2952540014 doi "https://doi.org/10.1186/s12859-019-2929-8" @default.
- W2952540014 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6580485" @default.
- W2952540014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31208324" @default.
- W2952540014 hasPublicationYear "2019" @default.
- W2952540014 type Work @default.
- W2952540014 sameAs 2952540014 @default.
- W2952540014 citedByCount "17" @default.
- W2952540014 countsByYear W29525400142020 @default.
- W2952540014 countsByYear W29525400142021 @default.
- W2952540014 countsByYear W29525400142022 @default.
- W2952540014 countsByYear W29525400142023 @default.
- W2952540014 crossrefType "journal-article" @default.
- W2952540014 hasAuthorship W2952540014A5005978603 @default.
- W2952540014 hasAuthorship W2952540014A5008623453 @default.
- W2952540014 hasAuthorship W2952540014A5011603476 @default.
- W2952540014 hasAuthorship W2952540014A5024545318 @default.
- W2952540014 hasAuthorship W2952540014A5024965387 @default.
- W2952540014 hasAuthorship W2952540014A5040980527 @default.
- W2952540014 hasAuthorship W2952540014A5043024040 @default.
- W2952540014 hasAuthorship W2952540014A5064945246 @default.
- W2952540014 hasBestOaLocation W29525400141 @default.
- W2952540014 hasConcept C107457646 @default.
- W2952540014 hasConcept C111030470 @default.
- W2952540014 hasConcept C119857082 @default.
- W2952540014 hasConcept C124101348 @default.
- W2952540014 hasConcept C154945302 @default.
- W2952540014 hasConcept C170130773 @default.
- W2952540014 hasConcept C27438332 @default.
- W2952540014 hasConcept C34736171 @default.
- W2952540014 hasConcept C41008148 @default.
- W2952540014 hasConcept C58041806 @default.
- W2952540014 hasConcept C70721500 @default.
- W2952540014 hasConcept C86803240 @default.
- W2952540014 hasConcept C9357733 @default.
- W2952540014 hasConcept C95623464 @default.
- W2952540014 hasConceptScore W2952540014C107457646 @default.
- W2952540014 hasConceptScore W2952540014C111030470 @default.
- W2952540014 hasConceptScore W2952540014C119857082 @default.
- W2952540014 hasConceptScore W2952540014C124101348 @default.
- W2952540014 hasConceptScore W2952540014C154945302 @default.
- W2952540014 hasConceptScore W2952540014C170130773 @default.
- W2952540014 hasConceptScore W2952540014C27438332 @default.
- W2952540014 hasConceptScore W2952540014C34736171 @default.
- W2952540014 hasConceptScore W2952540014C41008148 @default.
- W2952540014 hasConceptScore W2952540014C58041806 @default.
- W2952540014 hasConceptScore W2952540014C70721500 @default.
- W2952540014 hasConceptScore W2952540014C86803240 @default.
- W2952540014 hasConceptScore W2952540014C9357733 @default.
- W2952540014 hasConceptScore W2952540014C95623464 @default.
- W2952540014 hasFunder F4320337351 @default.
- W2952540014 hasIssue "1" @default.
- W2952540014 hasLocation W29525400141 @default.
- W2952540014 hasLocation W29525400142 @default.
- W2952540014 hasLocation W29525400143 @default.
- W2952540014 hasOpenAccess W2952540014 @default.
- W2952540014 hasPrimaryLocation W29525400141 @default.
- W2952540014 hasRelatedWork W2022884247 @default.
- W2952540014 hasRelatedWork W2247260763 @default.
- W2952540014 hasRelatedWork W2807600438 @default.
- W2952540014 hasRelatedWork W2946852493 @default.
- W2952540014 hasRelatedWork W2947268995 @default.
- W2952540014 hasRelatedWork W2949824501 @default.
- W2952540014 hasRelatedWork W3217267892 @default.
- W2952540014 hasRelatedWork W4237962661 @default.
- W2952540014 hasRelatedWork W4376167249 @default.