Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952552781> ?p ?o ?g. }
- W2952552781 abstract "With the advancement of treatment modalities in radiation therapy for cancer patients, outcomes have improved, but at the cost of increased treatment plan complexity and planning time. The accurate prediction of dose distributions would alleviate this issue by guiding clinical plan optimization to save time and maintain high quality plans. We have modified a convolutional deep network model, U-net (originally designed for segmentation purposes), for predicting dose from patient image contours of the planning target volume (PTV) and organs at risk (OAR). We show that, as an example, we are able to accurately predict the dose of intensity-modulated radiation therapy (IMRT) for prostate cancer patients, where the average Dice similarity coefficient is 0.91 when comparing the predicted vs. true isodose volumes between 0% and 100% of the prescription dose. The average value of the absolute differences in [max, mean] dose is found to be under 5% of the prescription dose, specifically for each structure is [1.80%, 1.03%](PTV), [1.94%, 4.22%](Bladder), [1.80%, 0.48%](Body), [3.87%, 1.79%](L Femoral Head), [5.07%, 2.55%](R Femoral Head), and [1.26%, 1.62%](Rectum) of the prescription dose. We thus managed to map a desired radiation dose distribution from a patient's PTV and OAR contours. As an additional advantage, relatively little data was used in the techniques and models described in this paper." @default.
- W2952552781 created "2019-06-27" @default.
- W2952552781 creator A5018120191 @default.
- W2952552781 creator A5033866941 @default.
- W2952552781 creator A5050343410 @default.
- W2952552781 creator A5059684522 @default.
- W2952552781 creator A5066232843 @default.
- W2952552781 creator A5071400654 @default.
- W2952552781 creator A5081307285 @default.
- W2952552781 date "2017-09-26" @default.
- W2952552781 modified "2023-09-23" @default.
- W2952552781 title "A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning" @default.
- W2952552781 cites W1522301498 @default.
- W2952552781 cites W1686810756 @default.
- W2952552781 cites W1901129140 @default.
- W2952552781 cites W1903029394 @default.
- W2952552781 cites W1963932209 @default.
- W2952552781 cites W1978752707 @default.
- W2952552781 cites W1980956836 @default.
- W2952552781 cites W1987006437 @default.
- W2952552781 cites W1987419782 @default.
- W2952552781 cites W1989099434 @default.
- W2952552781 cites W1991586260 @default.
- W2952552781 cites W2003071413 @default.
- W2952552781 cites W2005908557 @default.
- W2952552781 cites W2014775907 @default.
- W2952552781 cites W2017857032 @default.
- W2952552781 cites W2021347862 @default.
- W2952552781 cites W2021482893 @default.
- W2952552781 cites W2035629892 @default.
- W2952552781 cites W2037803762 @default.
- W2952552781 cites W2042836111 @default.
- W2952552781 cites W2043054410 @default.
- W2952552781 cites W2048611568 @default.
- W2952552781 cites W2061036312 @default.
- W2952552781 cites W2069905590 @default.
- W2952552781 cites W2074700893 @default.
- W2952552781 cites W2078588198 @default.
- W2952552781 cites W2081459829 @default.
- W2952552781 cites W2084851290 @default.
- W2952552781 cites W2086830224 @default.
- W2952552781 cites W2094618834 @default.
- W2952552781 cites W2095705004 @default.
- W2952552781 cites W2102605133 @default.
- W2952552781 cites W2109037291 @default.
- W2952552781 cites W2131034218 @default.
- W2952552781 cites W2140044955 @default.
- W2952552781 cites W2143472867 @default.
- W2952552781 cites W2146937987 @default.
- W2952552781 cites W2147800946 @default.
- W2952552781 cites W2159709440 @default.
- W2952552781 cites W2196898084 @default.
- W2952552781 cites W2271840356 @default.
- W2952552781 cites W2334943959 @default.
- W2952552781 cites W2422457600 @default.
- W2952552781 cites W2524647422 @default.
- W2952552781 cites W2608000707 @default.
- W2952552781 cites W2610717285 @default.
- W2952552781 cites W2783857055 @default.
- W2952552781 cites W2949117887 @default.
- W2952552781 cites W2952637581 @default.
- W2952552781 cites W2962914239 @default.
- W2952552781 cites W3098640627 @default.
- W2952552781 cites W3101658832 @default.
- W2952552781 cites W2472561118 @default.
- W2952552781 doi "https://doi.org/10.48550/arxiv.1709.09233" @default.
- W2952552781 hasPublicationYear "2017" @default.
- W2952552781 type Work @default.
- W2952552781 sameAs 2952552781 @default.
- W2952552781 citedByCount "2" @default.
- W2952552781 countsByYear W29525527812018 @default.
- W2952552781 countsByYear W29525527812020 @default.
- W2952552781 crossrefType "posted-content" @default.
- W2952552781 hasAuthorship W2952552781A5018120191 @default.
- W2952552781 hasAuthorship W2952552781A5033866941 @default.
- W2952552781 hasAuthorship W2952552781A5050343410 @default.
- W2952552781 hasAuthorship W2952552781A5059684522 @default.
- W2952552781 hasAuthorship W2952552781A5066232843 @default.
- W2952552781 hasAuthorship W2952552781A5071400654 @default.
- W2952552781 hasAuthorship W2952552781A5081307285 @default.
- W2952552781 hasBestOaLocation W29525527811 @default.
- W2952552781 hasConcept C121608353 @default.
- W2952552781 hasConcept C126322002 @default.
- W2952552781 hasConcept C126838900 @default.
- W2952552781 hasConcept C141071460 @default.
- W2952552781 hasConcept C144024400 @default.
- W2952552781 hasConcept C154945302 @default.
- W2952552781 hasConcept C19527891 @default.
- W2952552781 hasConcept C201645570 @default.
- W2952552781 hasConcept C2776235491 @default.
- W2952552781 hasConcept C2779100257 @default.
- W2952552781 hasConcept C2779903281 @default.
- W2952552781 hasConcept C2780192828 @default.
- W2952552781 hasConcept C2781074409 @default.
- W2952552781 hasConcept C2989005 @default.
- W2952552781 hasConcept C36289849 @default.
- W2952552781 hasConcept C41008148 @default.
- W2952552781 hasConcept C509974204 @default.
- W2952552781 hasConcept C71924100 @default.
- W2952552781 hasConcept C89600930 @default.