Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952563140> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2952563140 abstract "In the symplectic category there is a `connect sum' operation that glues symplectic manifolds by identifying neighborhoods of embedded codimension two submanifolds. This paper establishes a formula for the Gromov-Witten invariants of a symplectic sum Z=X#Y in terms of the relative GW invariants of X and Y. Several applications to enumerative geometry are given." @default.
- W2952563140 created "2019-06-27" @default.
- W2952563140 creator A5013638611 @default.
- W2952563140 creator A5059251997 @default.
- W2952563140 date "2000-10-23" @default.
- W2952563140 modified "2023-09-27" @default.
- W2952563140 title "The Symplectic Sum Formula for Gromov-Witten Invariants" @default.
- W2952563140 cites W1480660276 @default.
- W2952563140 cites W1494701719 @default.
- W2952563140 cites W1635678696 @default.
- W2952563140 cites W1673156116 @default.
- W2952563140 cites W1916008908 @default.
- W2952563140 cites W1966786065 @default.
- W2952563140 cites W2003448897 @default.
- W2952563140 cites W2025031873 @default.
- W2952563140 cites W2028612687 @default.
- W2952563140 cites W2076420843 @default.
- W2952563140 cites W2107905956 @default.
- W2952563140 cites W2112968295 @default.
- W2952563140 cites W2949493974 @default.
- W2952563140 cites W2963193174 @default.
- W2952563140 cites W3149757343 @default.
- W2952563140 hasPublicationYear "2000" @default.
- W2952563140 type Work @default.
- W2952563140 sameAs 2952563140 @default.
- W2952563140 citedByCount "19" @default.
- W2952563140 crossrefType "posted-content" @default.
- W2952563140 hasAuthorship W2952563140A5013638611 @default.
- W2952563140 hasAuthorship W2952563140A5059251997 @default.
- W2952563140 hasConcept C104586451 @default.
- W2952563140 hasConcept C136119220 @default.
- W2952563140 hasConcept C168619227 @default.
- W2952563140 hasConcept C202444582 @default.
- W2952563140 hasConcept C207789664 @default.
- W2952563140 hasConcept C33923547 @default.
- W2952563140 hasConcept C40265840 @default.
- W2952563140 hasConcept C83979697 @default.
- W2952563140 hasConceptScore W2952563140C104586451 @default.
- W2952563140 hasConceptScore W2952563140C136119220 @default.
- W2952563140 hasConceptScore W2952563140C168619227 @default.
- W2952563140 hasConceptScore W2952563140C202444582 @default.
- W2952563140 hasConceptScore W2952563140C207789664 @default.
- W2952563140 hasConceptScore W2952563140C33923547 @default.
- W2952563140 hasConceptScore W2952563140C40265840 @default.
- W2952563140 hasConceptScore W2952563140C83979697 @default.
- W2952563140 hasLocation W29525631401 @default.
- W2952563140 hasOpenAccess W2952563140 @default.
- W2952563140 hasPrimaryLocation W29525631401 @default.
- W2952563140 hasRelatedWork W1215061358 @default.
- W2952563140 hasRelatedWork W1506249133 @default.
- W2952563140 hasRelatedWork W1596419715 @default.
- W2952563140 hasRelatedWork W1713442127 @default.
- W2952563140 hasRelatedWork W2003448897 @default.
- W2952563140 hasRelatedWork W2023693336 @default.
- W2952563140 hasRelatedWork W2064369416 @default.
- W2952563140 hasRelatedWork W2086827797 @default.
- W2952563140 hasRelatedWork W2152925048 @default.
- W2952563140 hasRelatedWork W2155693591 @default.
- W2952563140 hasRelatedWork W2182139704 @default.
- W2952563140 hasRelatedWork W22000680 @default.
- W2952563140 hasRelatedWork W2209555694 @default.
- W2952563140 hasRelatedWork W2728201298 @default.
- W2952563140 hasRelatedWork W2952047915 @default.
- W2952563140 hasRelatedWork W2952249854 @default.
- W2952563140 hasRelatedWork W2963193174 @default.
- W2952563140 hasRelatedWork W2964168176 @default.
- W2952563140 hasRelatedWork W3004484008 @default.
- W2952563140 hasRelatedWork W3149757343 @default.
- W2952563140 isParatext "false" @default.
- W2952563140 isRetracted "false" @default.
- W2952563140 magId "2952563140" @default.
- W2952563140 workType "article" @default.