Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952622013> ?p ?o ?g. }
- W2952622013 abstract "In this paper, we propose a neural network-based approach, namely Adversarial Attention Network, to the task of multi-dimensional emotion regression, which automatically rates multiple emotion dimension scores for an input text. Especially, to determine which words are valuable for a particular emotion dimension, an attention layer is trained to weight the words in an input sequence. Furthermore, adversarial training is employed between two attention layers to learn better word weights via a discriminator. In particular, a shared attention layer is incorporated to learn public word weights between two emotion dimensions. Empirical evaluation on the EMOBANK corpus shows that our approach achieves notable improvements in r-values on both EMOBANK Reader’s and Writer’s multi-dimensional emotion regression tasks in all domains over the state-of-the-art baselines." @default.
- W2952622013 created "2019-06-27" @default.
- W2952622013 creator A5003885809 @default.
- W2952622013 creator A5012794465 @default.
- W2952622013 creator A5030357541 @default.
- W2952622013 date "2019-01-01" @default.
- W2952622013 modified "2023-10-17" @default.
- W2952622013 title "Adversarial Attention Modeling for Multi-dimensional Emotion Regression" @default.
- W2952622013 cites W1533861849 @default.
- W2952622013 cites W2110278938 @default.
- W2952622013 cites W2250553934 @default.
- W2952622013 cites W2339570520 @default.
- W2952622013 cites W2468785836 @default.
- W2952622013 cites W2514588627 @default.
- W2952622013 cites W2605367287 @default.
- W2952622013 cites W2624872001 @default.
- W2952622013 cites W2741036097 @default.
- W2952622013 cites W2741447225 @default.
- W2952622013 cites W2760600531 @default.
- W2952622013 cites W2888536529 @default.
- W2952622013 cites W2890024344 @default.
- W2952622013 cites W2891884907 @default.
- W2952622013 cites W2962897020 @default.
- W2952622013 cites W2963956654 @default.
- W2952622013 cites W3148140980 @default.
- W2952622013 cites W654454365 @default.
- W2952622013 doi "https://doi.org/10.18653/v1/p19-1045" @default.
- W2952622013 hasPublicationYear "2019" @default.
- W2952622013 type Work @default.
- W2952622013 sameAs 2952622013 @default.
- W2952622013 citedByCount "18" @default.
- W2952622013 countsByYear W29526220132019 @default.
- W2952622013 countsByYear W29526220132020 @default.
- W2952622013 countsByYear W29526220132021 @default.
- W2952622013 countsByYear W29526220132022 @default.
- W2952622013 countsByYear W29526220132023 @default.
- W2952622013 crossrefType "proceedings-article" @default.
- W2952622013 hasAuthorship W2952622013A5003885809 @default.
- W2952622013 hasAuthorship W2952622013A5012794465 @default.
- W2952622013 hasAuthorship W2952622013A5030357541 @default.
- W2952622013 hasBestOaLocation W29526220131 @default.
- W2952622013 hasConcept C105795698 @default.
- W2952622013 hasConcept C119857082 @default.
- W2952622013 hasConcept C154945302 @default.
- W2952622013 hasConcept C162324750 @default.
- W2952622013 hasConcept C178790620 @default.
- W2952622013 hasConcept C185592680 @default.
- W2952622013 hasConcept C187736073 @default.
- W2952622013 hasConcept C202444582 @default.
- W2952622013 hasConcept C204321447 @default.
- W2952622013 hasConcept C2524010 @default.
- W2952622013 hasConcept C2778112365 @default.
- W2952622013 hasConcept C2779227376 @default.
- W2952622013 hasConcept C2779803651 @default.
- W2952622013 hasConcept C2780451532 @default.
- W2952622013 hasConcept C28490314 @default.
- W2952622013 hasConcept C33676613 @default.
- W2952622013 hasConcept C33923547 @default.
- W2952622013 hasConcept C37736160 @default.
- W2952622013 hasConcept C41008148 @default.
- W2952622013 hasConcept C50644808 @default.
- W2952622013 hasConcept C54355233 @default.
- W2952622013 hasConcept C76155785 @default.
- W2952622013 hasConcept C83546350 @default.
- W2952622013 hasConcept C86803240 @default.
- W2952622013 hasConcept C90805587 @default.
- W2952622013 hasConcept C94915269 @default.
- W2952622013 hasConceptScore W2952622013C105795698 @default.
- W2952622013 hasConceptScore W2952622013C119857082 @default.
- W2952622013 hasConceptScore W2952622013C154945302 @default.
- W2952622013 hasConceptScore W2952622013C162324750 @default.
- W2952622013 hasConceptScore W2952622013C178790620 @default.
- W2952622013 hasConceptScore W2952622013C185592680 @default.
- W2952622013 hasConceptScore W2952622013C187736073 @default.
- W2952622013 hasConceptScore W2952622013C202444582 @default.
- W2952622013 hasConceptScore W2952622013C204321447 @default.
- W2952622013 hasConceptScore W2952622013C2524010 @default.
- W2952622013 hasConceptScore W2952622013C2778112365 @default.
- W2952622013 hasConceptScore W2952622013C2779227376 @default.
- W2952622013 hasConceptScore W2952622013C2779803651 @default.
- W2952622013 hasConceptScore W2952622013C2780451532 @default.
- W2952622013 hasConceptScore W2952622013C28490314 @default.
- W2952622013 hasConceptScore W2952622013C33676613 @default.
- W2952622013 hasConceptScore W2952622013C33923547 @default.
- W2952622013 hasConceptScore W2952622013C37736160 @default.
- W2952622013 hasConceptScore W2952622013C41008148 @default.
- W2952622013 hasConceptScore W2952622013C50644808 @default.
- W2952622013 hasConceptScore W2952622013C54355233 @default.
- W2952622013 hasConceptScore W2952622013C76155785 @default.
- W2952622013 hasConceptScore W2952622013C83546350 @default.
- W2952622013 hasConceptScore W2952622013C86803240 @default.
- W2952622013 hasConceptScore W2952622013C90805587 @default.
- W2952622013 hasConceptScore W2952622013C94915269 @default.
- W2952622013 hasLocation W29526220131 @default.
- W2952622013 hasOpenAccess W2952622013 @default.
- W2952622013 hasPrimaryLocation W29526220131 @default.
- W2952622013 hasRelatedWork W1489300767 @default.
- W2952622013 hasRelatedWork W1980965563 @default.
- W2952622013 hasRelatedWork W2057775761 @default.
- W2952622013 hasRelatedWork W2089959425 @default.