Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952636017> ?p ?o ?g. }
- W2952636017 abstract "Meta-heuristic search algorithms such as genetic algorithms have been applied successfully to generate unit tests, but typically take long to produce reasonable results, achieve sub-optimal code coverage, and have large variance due to their stochastic nature. Parallel genetic algorithms have been shown to be an effective improvement over sequential algorithms in many domains, but have seen little exploration in the context of unit test generation to date. In this paper, we describe a parallelised version of the many-objective sorting algorithm (MOSA) for test generation. Through the use of island models, where individuals can migrate between independently evolving populations, this algorithm not only reduces the necessary search time, but produces overall better results. Experiments with an implementation of parallel MOSA on the EvoSuite test generation tool using a large corpus of complex open source Java classes confirm that the parallelised MOSA algorithm achieves on average 84% code coverage, compared to 79% achieved by a standard sequential version." @default.
- W2952636017 created "2019-06-27" @default.
- W2952636017 creator A5028926123 @default.
- W2952636017 creator A5057842121 @default.
- W2952636017 creator A5079261847 @default.
- W2952636017 date "2019-04-01" @default.
- W2952636017 modified "2023-09-27" @default.
- W2952636017 title "Parallel Many-Objective Search for Unit Tests" @default.
- W2952636017 cites W133371706 @default.
- W2952636017 cites W1485448886 @default.
- W2952636017 cites W1500783943 @default.
- W2952636017 cites W1526710119 @default.
- W2952636017 cites W1550894544 @default.
- W2952636017 cites W1574141101 @default.
- W2952636017 cites W1599808047 @default.
- W2952636017 cites W1639726083 @default.
- W2952636017 cites W1971650562 @default.
- W2952636017 cites W1975833562 @default.
- W2952636017 cites W1993760289 @default.
- W2952636017 cites W2024352272 @default.
- W2952636017 cites W2039482267 @default.
- W2952636017 cites W2041470132 @default.
- W2952636017 cites W2114869486 @default.
- W2952636017 cites W2114900930 @default.
- W2952636017 cites W2115065589 @default.
- W2952636017 cites W2126105956 @default.
- W2952636017 cites W2126268739 @default.
- W2952636017 cites W2134954564 @default.
- W2952636017 cites W2181647217 @default.
- W2952636017 cites W2198098822 @default.
- W2952636017 cites W2225559300 @default.
- W2952636017 cites W2306992465 @default.
- W2952636017 cites W2586946380 @default.
- W2952636017 cites W2888495597 @default.
- W2952636017 cites W9192737 @default.
- W2952636017 cites W2165349994 @default.
- W2952636017 doi "https://doi.org/10.1109/icst.2019.00014" @default.
- W2952636017 hasPublicationYear "2019" @default.
- W2952636017 type Work @default.
- W2952636017 sameAs 2952636017 @default.
- W2952636017 citedByCount "0" @default.
- W2952636017 crossrefType "proceedings-article" @default.
- W2952636017 hasAuthorship W2952636017A5028926123 @default.
- W2952636017 hasAuthorship W2952636017A5057842121 @default.
- W2952636017 hasAuthorship W2952636017A5079261847 @default.
- W2952636017 hasConcept C111696304 @default.
- W2952636017 hasConcept C11413529 @default.
- W2952636017 hasConcept C119857082 @default.
- W2952636017 hasConcept C148027188 @default.
- W2952636017 hasConcept C151730666 @default.
- W2952636017 hasConcept C154945302 @default.
- W2952636017 hasConcept C173608175 @default.
- W2952636017 hasConcept C173801870 @default.
- W2952636017 hasConcept C177264268 @default.
- W2952636017 hasConcept C199360897 @default.
- W2952636017 hasConcept C2776760102 @default.
- W2952636017 hasConcept C2777904410 @default.
- W2952636017 hasConcept C2779343474 @default.
- W2952636017 hasConcept C41008148 @default.
- W2952636017 hasConcept C548217200 @default.
- W2952636017 hasConcept C86803240 @default.
- W2952636017 hasConcept C8880873 @default.
- W2952636017 hasConceptScore W2952636017C111696304 @default.
- W2952636017 hasConceptScore W2952636017C11413529 @default.
- W2952636017 hasConceptScore W2952636017C119857082 @default.
- W2952636017 hasConceptScore W2952636017C148027188 @default.
- W2952636017 hasConceptScore W2952636017C151730666 @default.
- W2952636017 hasConceptScore W2952636017C154945302 @default.
- W2952636017 hasConceptScore W2952636017C173608175 @default.
- W2952636017 hasConceptScore W2952636017C173801870 @default.
- W2952636017 hasConceptScore W2952636017C177264268 @default.
- W2952636017 hasConceptScore W2952636017C199360897 @default.
- W2952636017 hasConceptScore W2952636017C2776760102 @default.
- W2952636017 hasConceptScore W2952636017C2777904410 @default.
- W2952636017 hasConceptScore W2952636017C2779343474 @default.
- W2952636017 hasConceptScore W2952636017C41008148 @default.
- W2952636017 hasConceptScore W2952636017C548217200 @default.
- W2952636017 hasConceptScore W2952636017C86803240 @default.
- W2952636017 hasConceptScore W2952636017C8880873 @default.
- W2952636017 hasLocation W29526360171 @default.
- W2952636017 hasOpenAccess W2952636017 @default.
- W2952636017 hasPrimaryLocation W29526360171 @default.
- W2952636017 hasRelatedWork W137981468 @default.
- W2952636017 hasRelatedWork W1507267329 @default.
- W2952636017 hasRelatedWork W1583378099 @default.
- W2952636017 hasRelatedWork W1597805552 @default.
- W2952636017 hasRelatedWork W1599808047 @default.
- W2952636017 hasRelatedWork W180014928 @default.
- W2952636017 hasRelatedWork W1865850638 @default.
- W2952636017 hasRelatedWork W2011266061 @default.
- W2952636017 hasRelatedWork W2035061460 @default.
- W2952636017 hasRelatedWork W2047348251 @default.
- W2952636017 hasRelatedWork W2062927255 @default.
- W2952636017 hasRelatedWork W2078187789 @default.
- W2952636017 hasRelatedWork W2078646307 @default.
- W2952636017 hasRelatedWork W2897046182 @default.
- W2952636017 hasRelatedWork W2947389885 @default.
- W2952636017 hasRelatedWork W2969016694 @default.
- W2952636017 hasRelatedWork W3002805465 @default.
- W2952636017 hasRelatedWork W3004268956 @default.