Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952648838> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2952648838 abstract "The Hecke algebra H_n contains well known idempotents E_{lambda} which are indexed by Young diagrams with n cells. They were originally described by Gyoja. A skein theoretical description of E_{lambda} was given by Aiston and Morton. The closure of E_{lambda} becomes an element Q_{lambda} of the skein of the annulus. In this skein, they are known to obey the same multiplication rule as the symmetric Schur functions s_{lambda}. But previous proofs of this fact used results about quantum groups which were far beyond the scope of skein theory. Our elementary proof uses only skein theory and basic algebra." @default.
- W2952648838 created "2019-06-27" @default.
- W2952648838 creator A5036857973 @default.
- W2952648838 date "2001-10-11" @default.
- W2952648838 modified "2023-09-27" @default.
- W2952648838 title "Idempotents of the Hecke algebra become Schur functions in the skein of the annulus" @default.
- W2952648838 cites W132411375 @default.
- W2952648838 cites W1490068203 @default.
- W2952648838 cites W1975262272 @default.
- W2952648838 cites W1985872803 @default.
- W2952648838 cites W1993569590 @default.
- W2952648838 cites W2134984950 @default.
- W2952648838 cites W2949628047 @default.
- W2952648838 cites W3093258726 @default.
- W2952648838 hasPublicationYear "2001" @default.
- W2952648838 type Work @default.
- W2952648838 sameAs 2952648838 @default.
- W2952648838 citedByCount "0" @default.
- W2952648838 crossrefType "posted-content" @default.
- W2952648838 hasAuthorship W2952648838A5036857973 @default.
- W2952648838 hasConcept C136119220 @default.
- W2952648838 hasConcept C194674032 @default.
- W2952648838 hasConcept C202444582 @default.
- W2952648838 hasConcept C2781280181 @default.
- W2952648838 hasConcept C33923547 @default.
- W2952648838 hasConceptScore W2952648838C136119220 @default.
- W2952648838 hasConceptScore W2952648838C194674032 @default.
- W2952648838 hasConceptScore W2952648838C202444582 @default.
- W2952648838 hasConceptScore W2952648838C2781280181 @default.
- W2952648838 hasConceptScore W2952648838C33923547 @default.
- W2952648838 hasLocation W29526488381 @default.
- W2952648838 hasOpenAccess W2952648838 @default.
- W2952648838 hasPrimaryLocation W29526488381 @default.
- W2952648838 hasRelatedWork W1655543555 @default.
- W2952648838 hasRelatedWork W1663250291 @default.
- W2952648838 hasRelatedWork W1873029543 @default.
- W2952648838 hasRelatedWork W1987378214 @default.
- W2952648838 hasRelatedWork W1987540549 @default.
- W2952648838 hasRelatedWork W2083689651 @default.
- W2952648838 hasRelatedWork W2116337128 @default.
- W2952648838 hasRelatedWork W2287423222 @default.
- W2952648838 hasRelatedWork W2795086838 @default.
- W2952648838 hasRelatedWork W2914440313 @default.
- W2952648838 hasRelatedWork W2939342133 @default.
- W2952648838 hasRelatedWork W2950576005 @default.
- W2952648838 hasRelatedWork W2951403954 @default.
- W2952648838 hasRelatedWork W2962980169 @default.
- W2952648838 hasRelatedWork W2963391712 @default.
- W2952648838 hasRelatedWork W2963864706 @default.
- W2952648838 hasRelatedWork W3117865898 @default.
- W2952648838 hasRelatedWork W3167902721 @default.
- W2952648838 hasRelatedWork W3185800369 @default.
- W2952648838 hasRelatedWork W3093807784 @default.
- W2952648838 isParatext "false" @default.
- W2952648838 isRetracted "false" @default.
- W2952648838 magId "2952648838" @default.
- W2952648838 workType "article" @default.