Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952672711> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2952672711 abstract "Topological quantum field theory associates to a punctured surface $Sigma$, a level $r$ and colors $c$ in ${1,...,r-1}$ at the marked points a finite dimensional hermitian space $V_r(Sigma,c)$. Curves $gamma$ on $Sigma$ act as Hermitian operator $T_r^gamma$ on these spaces. In the case of the punctured torus and the 4 times punctured sphere, we prove that the matrix elements of $T_r^gamma$ have an asymptotic expansion in powers of $frac{1}{r}$ and we identify the two first terms using trace functions on representation spaces of the surface in $su$. We conjecture a formula for the general case. Then we show that the curve operators are Toeplitz operators on the sphere in the sense that $T_r^{gamma}=Pi_r f^gamma_rPi_r$ where $Pi_r$ is the Toeplitz projector and $f^gamma_r$ is an explicit function on the sphere which is smooth away from the poles. Using this formula, we show that under some assumptions on the colors associated to the marked points, the sequence $T^gamma_r$ is a Toeplitz operator in the usual sense with principal symbol equal to the trace function and with subleading term explicitly computed. We use this result and semi-classical analysis in order to compute the asymptotics of matrix elements of the representation of the mapping class group of $Sigma$ on $V_r(Sigma,c)$. We recover in this way the result of Taylor and Woodward on the asymptotics of the quantum 6j-symbols and treat the case of the punctured S-matrix. We conclude with some partial results when $Sigma$ is a genus 2 surface without marked points." @default.
- W2952672711 created "2019-06-27" @default.
- W2952672711 creator A5032430035 @default.
- W2952672711 creator A5079970857 @default.
- W2952672711 date "2015-01-01" @default.
- W2952672711 modified "2023-09-23" @default.
- W2952672711 title "Toeplitz operators in TQFT via skein theory" @default.
- W2952672711 cites W1506226245 @default.
- W2952672711 cites W1984472248 @default.
- W2952672711 cites W1988254157 @default.
- W2952672711 cites W2006823843 @default.
- W2952672711 cites W2034878887 @default.
- W2952672711 cites W2043232165 @default.
- W2952672711 cites W2080743555 @default.
- W2952672711 cites W2949380834 @default.
- W2952672711 cites W2953030433 @default.
- W2952672711 cites W2963535672 @default.
- W2952672711 cites W3100521573 @default.
- W2952672711 hasPublicationYear "2015" @default.
- W2952672711 type Work @default.
- W2952672711 sameAs 2952672711 @default.
- W2952672711 citedByCount "1" @default.
- W2952672711 crossrefType "journal-article" @default.
- W2952672711 hasAuthorship W2952672711A5032430035 @default.
- W2952672711 hasAuthorship W2952672711A5079970857 @default.
- W2952672711 hasConcept C136119220 @default.
- W2952672711 hasConcept C147710293 @default.
- W2952672711 hasConcept C194674032 @default.
- W2952672711 hasConcept C202444582 @default.
- W2952672711 hasConcept C33923547 @default.
- W2952672711 hasConcept C41008148 @default.
- W2952672711 hasConcept C7503960 @default.
- W2952672711 hasConceptScore W2952672711C136119220 @default.
- W2952672711 hasConceptScore W2952672711C147710293 @default.
- W2952672711 hasConceptScore W2952672711C194674032 @default.
- W2952672711 hasConceptScore W2952672711C202444582 @default.
- W2952672711 hasConceptScore W2952672711C33923547 @default.
- W2952672711 hasConceptScore W2952672711C41008148 @default.
- W2952672711 hasConceptScore W2952672711C7503960 @default.
- W2952672711 hasOpenAccess W2952672711 @default.
- W2952672711 hasRelatedWork W1553893319 @default.
- W2952672711 hasRelatedWork W2020842150 @default.
- W2952672711 hasRelatedWork W2048604065 @default.
- W2952672711 hasRelatedWork W2077155832 @default.
- W2952672711 hasRelatedWork W2114771420 @default.
- W2952672711 hasRelatedWork W2185733537 @default.
- W2952672711 hasRelatedWork W2354178226 @default.
- W2952672711 hasRelatedWork W2478221555 @default.
- W2952672711 hasRelatedWork W2952672711 @default.
- W2952672711 hasRelatedWork W4283367211 @default.
- W2952672711 isParatext "false" @default.
- W2952672711 isRetracted "false" @default.
- W2952672711 magId "2952672711" @default.
- W2952672711 workType "article" @default.