Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952674893> ?p ?o ?g. }
- W2952674893 abstract "By leveraging the concept of mobile edge computing (MEC), massive amount of data generated by a large number of Internet of Things (IoT) devices could be offloaded to MEC server at the edge of wireless network for further computational intensive processing. However, due to the resource constraint of IoT devices and wireless network, both the communications and computation resources need to be allocated and scheduled efficiently for better system performance. In this paper, we propose a joint computation offloading and multi-user scheduling algorithm for IoT edge computing system to minimize the long-term average weighted sum of delay and power consumption under stochastic traffic arrival. We formulate the dynamic optimization problem as an infinite-horizon average-reward continuous-time Markov decision process (CTMDP) model. One critical challenge in solving this MDP problem for the multi-user resource control is the curse-of-dimensionality problem, where the state space of the MDP model and the computation complexity increase exponentially with the growing number of users or IoT devices. In order to overcome this challenge, we use the deep reinforcement learning (RL) techniques and propose a neural network architecture to approximate the value functions for the post-decision system states. The designed algorithm to solve the CTMDP problem supports semi-distributed auction-based implementation, where the IoT devices submit bids to the BS to make the resource control decisions centrally. Simulation results show that the proposed algorithm provides significant performance improvement over the baseline algorithms, and also outperforms the RL algorithms based on other neural network architectures." @default.
- W2952674893 created "2019-06-27" @default.
- W2952674893 creator A5001126038 @default.
- W2952674893 creator A5016265548 @default.
- W2952674893 creator A5036065784 @default.
- W2952674893 creator A5039360390 @default.
- W2952674893 creator A5065443071 @default.
- W2952674893 creator A5075151504 @default.
- W2952674893 date "2019-06-18" @default.
- W2952674893 modified "2023-09-24" @default.
- W2952674893 title "Multi-user Resource Control with Deep Reinforcement Learning in IoT Edge Computing" @default.
- W2952674893 cites W1542941925 @default.
- W2952674893 cites W1641379095 @default.
- W2952674893 cites W2001178040 @default.
- W2952674893 cites W2043578481 @default.
- W2952674893 cites W2119567691 @default.
- W2952674893 cites W2121863487 @default.
- W2952674893 cites W2145339207 @default.
- W2952674893 cites W2399612147 @default.
- W2952674893 cites W2486687030 @default.
- W2952674893 cites W2548556240 @default.
- W2952674893 cites W2586903650 @default.
- W2952674893 cites W2593769694 @default.
- W2952674893 cites W2602857236 @default.
- W2952674893 cites W2624989916 @default.
- W2952674893 cites W2740377041 @default.
- W2952674893 cites W2751904527 @default.
- W2952674893 cites W2762586323 @default.
- W2952674893 cites W2765310706 @default.
- W2952674893 cites W2766401293 @default.
- W2952674893 cites W2768475350 @default.
- W2952674893 cites W2774912636 @default.
- W2952674893 cites W2786027963 @default.
- W2952674893 cites W2789896367 @default.
- W2952674893 cites W2792526074 @default.
- W2952674893 cites W2793121051 @default.
- W2952674893 cites W2808381205 @default.
- W2952674893 cites W2817829786 @default.
- W2952674893 cites W2898652425 @default.
- W2952674893 cites W2905026759 @default.
- W2952674893 cites W2908261578 @default.
- W2952674893 cites W2915520884 @default.
- W2952674893 cites W2920054549 @default.
- W2952674893 cites W2949201811 @default.
- W2952674893 cites W2962714198 @default.
- W2952674893 cites W2963334314 @default.
- W2952674893 doi "https://doi.org/10.48550/arxiv.1906.07860" @default.
- W2952674893 hasPublicationYear "2019" @default.
- W2952674893 type Work @default.
- W2952674893 sameAs 2952674893 @default.
- W2952674893 citedByCount "0" @default.
- W2952674893 crossrefType "posted-content" @default.
- W2952674893 hasAuthorship W2952674893A5001126038 @default.
- W2952674893 hasAuthorship W2952674893A5016265548 @default.
- W2952674893 hasAuthorship W2952674893A5036065784 @default.
- W2952674893 hasAuthorship W2952674893A5039360390 @default.
- W2952674893 hasAuthorship W2952674893A5065443071 @default.
- W2952674893 hasAuthorship W2952674893A5075151504 @default.
- W2952674893 hasBestOaLocation W29526748931 @default.
- W2952674893 hasConcept C105795698 @default.
- W2952674893 hasConcept C106189395 @default.
- W2952674893 hasConcept C108037233 @default.
- W2952674893 hasConcept C111919701 @default.
- W2952674893 hasConcept C120314980 @default.
- W2952674893 hasConcept C126255220 @default.
- W2952674893 hasConcept C138236772 @default.
- W2952674893 hasConcept C154945302 @default.
- W2952674893 hasConcept C159886148 @default.
- W2952674893 hasConcept C162307627 @default.
- W2952674893 hasConcept C186967261 @default.
- W2952674893 hasConcept C206729178 @default.
- W2952674893 hasConcept C2776061582 @default.
- W2952674893 hasConcept C2778456923 @default.
- W2952674893 hasConcept C2781041963 @default.
- W2952674893 hasConcept C2781055072 @default.
- W2952674893 hasConcept C33923547 @default.
- W2952674893 hasConcept C41008148 @default.
- W2952674893 hasConcept C555944384 @default.
- W2952674893 hasConcept C76155785 @default.
- W2952674893 hasConcept C79974875 @default.
- W2952674893 hasConcept C97541855 @default.
- W2952674893 hasConceptScore W2952674893C105795698 @default.
- W2952674893 hasConceptScore W2952674893C106189395 @default.
- W2952674893 hasConceptScore W2952674893C108037233 @default.
- W2952674893 hasConceptScore W2952674893C111919701 @default.
- W2952674893 hasConceptScore W2952674893C120314980 @default.
- W2952674893 hasConceptScore W2952674893C126255220 @default.
- W2952674893 hasConceptScore W2952674893C138236772 @default.
- W2952674893 hasConceptScore W2952674893C154945302 @default.
- W2952674893 hasConceptScore W2952674893C159886148 @default.
- W2952674893 hasConceptScore W2952674893C162307627 @default.
- W2952674893 hasConceptScore W2952674893C186967261 @default.
- W2952674893 hasConceptScore W2952674893C206729178 @default.
- W2952674893 hasConceptScore W2952674893C2776061582 @default.
- W2952674893 hasConceptScore W2952674893C2778456923 @default.
- W2952674893 hasConceptScore W2952674893C2781041963 @default.
- W2952674893 hasConceptScore W2952674893C2781055072 @default.
- W2952674893 hasConceptScore W2952674893C33923547 @default.
- W2952674893 hasConceptScore W2952674893C41008148 @default.
- W2952674893 hasConceptScore W2952674893C555944384 @default.