Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952831870> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2952831870 abstract "This paper discusses the existence of gradient estimates for second order hypoelliptic heat kernels on manifolds. It is now standard that such inequalities, in the elliptic case, are equivalent to a lower bound on the Ricci tensor of the Riemannian metric. For hypoelliptic operators, the associated Ricci curvature takes on the value -infty at points of degeneracy of the semi-Riemannian metric associated to the operator. For this reason, the standard proofs for the elliptic theory fail in the hypoelliptic setting. This paper presents recent results for hypoelliptic operators. Malliavin calculus methods transfer the problem to one of determining certain infinite dimensional estimates. Here, the underlying manifold is a Lie group, and the hypoelliptic operators are invariant under left translation. In particular, L^p-type gradient estimates hold for pin(1,infty), and the p=2 gradient estimate implies a Poincar'e estimate in this context." @default.
- W2952831870 created "2019-06-27" @default.
- W2952831870 creator A5026185294 @default.
- W2952831870 date "2005-08-22" @default.
- W2952831870 modified "2023-09-26" @default.
- W2952831870 title "Hypoelliptic heat kernel inequalities on Lie groups" @default.
- W2952831870 cites W1482876438 @default.
- W2952831870 cites W1499693376 @default.
- W2952831870 cites W1526278895 @default.
- W2952831870 cites W1538919982 @default.
- W2952831870 cites W1852328762 @default.
- W2952831870 cites W1969479518 @default.
- W2952831870 cites W2021268474 @default.
- W2952831870 cites W2034632473 @default.
- W2952831870 cites W2058857173 @default.
- W2952831870 cites W2098474757 @default.
- W2952831870 cites W2112681758 @default.
- W2952831870 cites W2148116521 @default.
- W2952831870 cites W2157206954 @default.
- W2952831870 cites W2327680971 @default.
- W2952831870 cites W2575386481 @default.
- W2952831870 cites W2576386146 @default.
- W2952831870 cites W649945387 @default.
- W2952831870 doi "https://doi.org/10.48550/arxiv.math/0508420" @default.
- W2952831870 hasPublicationYear "2005" @default.
- W2952831870 type Work @default.
- W2952831870 sameAs 2952831870 @default.
- W2952831870 citedByCount "3" @default.
- W2952831870 crossrefType "posted-content" @default.
- W2952831870 hasAuthorship W2952831870A5026185294 @default.
- W2952831870 hasBestOaLocation W29528318701 @default.
- W2952831870 hasConcept C12089564 @default.
- W2952831870 hasConcept C134306372 @default.
- W2952831870 hasConcept C148729565 @default.
- W2952831870 hasConcept C183212220 @default.
- W2952831870 hasConcept C187123786 @default.
- W2952831870 hasConcept C187915474 @default.
- W2952831870 hasConcept C195065555 @default.
- W2952831870 hasConcept C202444582 @default.
- W2952831870 hasConcept C24902271 @default.
- W2952831870 hasConcept C2524010 @default.
- W2952831870 hasConcept C33923547 @default.
- W2952831870 hasConcept C70610323 @default.
- W2952831870 hasConcept C70915906 @default.
- W2952831870 hasConcept C8464174 @default.
- W2952831870 hasConcept C9012821 @default.
- W2952831870 hasConceptScore W2952831870C12089564 @default.
- W2952831870 hasConceptScore W2952831870C134306372 @default.
- W2952831870 hasConceptScore W2952831870C148729565 @default.
- W2952831870 hasConceptScore W2952831870C183212220 @default.
- W2952831870 hasConceptScore W2952831870C187123786 @default.
- W2952831870 hasConceptScore W2952831870C187915474 @default.
- W2952831870 hasConceptScore W2952831870C195065555 @default.
- W2952831870 hasConceptScore W2952831870C202444582 @default.
- W2952831870 hasConceptScore W2952831870C24902271 @default.
- W2952831870 hasConceptScore W2952831870C2524010 @default.
- W2952831870 hasConceptScore W2952831870C33923547 @default.
- W2952831870 hasConceptScore W2952831870C70610323 @default.
- W2952831870 hasConceptScore W2952831870C70915906 @default.
- W2952831870 hasConceptScore W2952831870C8464174 @default.
- W2952831870 hasConceptScore W2952831870C9012821 @default.
- W2952831870 hasLocation W29528318701 @default.
- W2952831870 hasLocation W29528318702 @default.
- W2952831870 hasOpenAccess W2952831870 @default.
- W2952831870 hasPrimaryLocation W29528318701 @default.
- W2952831870 hasRelatedWork W1730396964 @default.
- W2952831870 hasRelatedWork W1764520696 @default.
- W2952831870 hasRelatedWork W1898145940 @default.
- W2952831870 hasRelatedWork W1980345897 @default.
- W2952831870 hasRelatedWork W2078107492 @default.
- W2952831870 hasRelatedWork W2086424236 @default.
- W2952831870 hasRelatedWork W2182778910 @default.
- W2952831870 hasRelatedWork W2950348399 @default.
- W2952831870 hasRelatedWork W2952831870 @default.
- W2952831870 hasRelatedWork W4294362310 @default.
- W2952831870 isParatext "false" @default.
- W2952831870 isRetracted "false" @default.
- W2952831870 magId "2952831870" @default.
- W2952831870 workType "article" @default.