Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952849658> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2952849658 abstract "For x and y sequences of real numbers define the inner product (x,y) = x(0)y(0) + x(1)y(1)+ ... which may not be finite or even exist. We say that x and y are orthogonal iff (x,y) converges and equals 0. Define l_p to be the set of all real sequences x such that |x(0)|^p + |x(1)|^p + .. converges. For Hilbert space, l_2, any family of pairwise orthogonal sequences must be countable. Thm 1. There exists a pairwise orthogonal family F of size continuum such that F is a subset of l_p for every p>2. It was already known that there exists a family of continuum many pairwise orthogonal elements of real sequences. Thm 2. There exists a perfect maximal orthogonal family of elements of real sequences. Abian raised the question of what are the possible cardinalities of maximal orthogonal families. Thm 3. In the Cohen real model there is a maximal orthogonal set cardinality omega_1, but there is no maximal orthogonal set of cardinality k with omega_1< k < c. Thm 4. For any countable standard model M of ZFC and cardinal k in M such that M satisfies k^omega=k, there exists a ccc generic extension M[G] such that the continuum of M[G] is k and in M[G] for every infinite cardinal i less than or equal to k there is a maximal orthogonal family of cardinality i. Thm 5. (MA_k(sigma-centered)) Suppose cardinality of X is less than or equal to k, X contains only finitely many elements of l_2, and for every distinct pair x,y in X the inner product (x,y) converges. Then there exists a z such that z is orthogonal to every element of X. Thm 6.(a) There exists X which is a maximal orthogonal family in l_2 such that for all n with 1leq n leqomega there exists Y of cardinality n with (X union Y) a maximal orthogonal family in $rr^om$. Furthermore, every maximal orthogonal family containing $X$ is countable. (b) There exists a perfect maximal orthogonal family P such that (P intersect l_2) is a maximal orthogonal family in $l_2$." @default.
- W2952849658 created "2019-06-27" @default.
- W2952849658 creator A5016634588 @default.
- W2952849658 creator A5062397219 @default.
- W2952849658 date "1995-09-12" @default.
- W2952849658 modified "2023-09-27" @default.
- W2952849658 title "Orthogonal Families of Real Sequences" @default.
- W2952849658 cites W2088829096 @default.
- W2952849658 hasPublicationYear "1995" @default.
- W2952849658 type Work @default.
- W2952849658 sameAs 2952849658 @default.
- W2952849658 citedByCount "0" @default.
- W2952849658 crossrefType "posted-content" @default.
- W2952849658 hasAuthorship W2952849658A5016634588 @default.
- W2952849658 hasAuthorship W2952849658A5062397219 @default.
- W2952849658 hasConcept C110729354 @default.
- W2952849658 hasConcept C114614502 @default.
- W2952849658 hasConcept C118615104 @default.
- W2952849658 hasConcept C121332964 @default.
- W2952849658 hasConcept C124101348 @default.
- W2952849658 hasConcept C136979486 @default.
- W2952849658 hasConcept C2779557605 @default.
- W2952849658 hasConcept C33923547 @default.
- W2952849658 hasConcept C41008148 @default.
- W2952849658 hasConcept C62520636 @default.
- W2952849658 hasConcept C87117476 @default.
- W2952849658 hasConcept C94020503 @default.
- W2952849658 hasConceptScore W2952849658C110729354 @default.
- W2952849658 hasConceptScore W2952849658C114614502 @default.
- W2952849658 hasConceptScore W2952849658C118615104 @default.
- W2952849658 hasConceptScore W2952849658C121332964 @default.
- W2952849658 hasConceptScore W2952849658C124101348 @default.
- W2952849658 hasConceptScore W2952849658C136979486 @default.
- W2952849658 hasConceptScore W2952849658C2779557605 @default.
- W2952849658 hasConceptScore W2952849658C33923547 @default.
- W2952849658 hasConceptScore W2952849658C41008148 @default.
- W2952849658 hasConceptScore W2952849658C62520636 @default.
- W2952849658 hasConceptScore W2952849658C87117476 @default.
- W2952849658 hasConceptScore W2952849658C94020503 @default.
- W2952849658 hasLocation W29528496581 @default.
- W2952849658 hasOpenAccess W2952849658 @default.
- W2952849658 hasPrimaryLocation W29528496581 @default.
- W2952849658 hasRelatedWork W111130281 @default.
- W2952849658 hasRelatedWork W1666073750 @default.
- W2952849658 hasRelatedWork W1965754865 @default.
- W2952849658 hasRelatedWork W1976681187 @default.
- W2952849658 hasRelatedWork W1980290091 @default.
- W2952849658 hasRelatedWork W2021650517 @default.
- W2952849658 hasRelatedWork W2041994803 @default.
- W2952849658 hasRelatedWork W2059272542 @default.
- W2952849658 hasRelatedWork W2069647670 @default.
- W2952849658 hasRelatedWork W2186055252 @default.
- W2952849658 hasRelatedWork W2741326573 @default.
- W2952849658 hasRelatedWork W2803437899 @default.
- W2952849658 hasRelatedWork W2872660268 @default.
- W2952849658 hasRelatedWork W2945647462 @default.
- W2952849658 hasRelatedWork W2952630356 @default.
- W2952849658 hasRelatedWork W2962917652 @default.
- W2952849658 hasRelatedWork W2964064473 @default.
- W2952849658 hasRelatedWork W3084403602 @default.
- W2952849658 hasRelatedWork W3203098167 @default.
- W2952849658 hasRelatedWork W773956391 @default.
- W2952849658 isParatext "false" @default.
- W2952849658 isRetracted "false" @default.
- W2952849658 magId "2952849658" @default.
- W2952849658 workType "article" @default.