Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952860180> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2952860180 abstract "Let {Ij} be an interval partition of the integers, f(x) a function on the circle group T and S(f) = (sum |f j|2)1/2 where fˆ j = fˆ cIj . In their 1995 paper, Hare and Klemes showed that, for fixed p ∈ (1, infinity), there exist lambdap > 1 and Ap, Bp > 0 such that if l(Ij+1)/ l(Ij) ≥ lambdap, where l(Ij) is the length of the interval Ij, then App fpp ≤ pS( f)pp ≤ Bpp fpp. That is, {Ij} is a Littlewood-Paley (p) partition. Since the intervals need not be adjacent, these partitions may be viewed as permutations of lacunary intervals. Partitions like these can be induced by subsets of sums of permuted lacunary sequences. In this thesis, we present two main results. First, complementary to the aforementioned work of Hare and Klemes who proved that sums of permuted lacunary sequences were Littlewood-Paley (p) partitions (for large enough ratio), we prove the surprising result that there are sums of permuted lacunary sequences of fixed ratio that cannot be obtained by iterating sums of permuted lacunary sequences of larger ratio finitely many times. The proof of this statement is based on the ideas developed in the 1989 paper of Hare and Klemes, especially with respect to the definition of a tree and to the theorem on the equivalency of a finitely generated partition and the absence of certain trees. These special sums may then be viewed as the critical test case for further progress on the conjecture of Hare and Klemes that sums of permuted lacunary sequences are Littlewood-Paley (p) partitions for any p. Secondly, we use the non-branching case of the method of Hare and Klemes developed in their 1992 and 1995 papers, and further developed by Hare in a general setting in 1997, to prove a result of Marcinkiewicz on iterated lacunary sequences in the case p = 4. This shows that the method introduced by Hare and Klemes can potentially be adapted to partitions other than those they were originally applied to. As well, in considering the proof given by Hare and Klemes (and by Hare in a general setting) that lacunary sequences are Littlewood-Paley (4) partitions, we present a slight variation on one of the computations which may be useful in regard to sharp versions of some of these computations, but otherwise follows the same pattern as that of the above papers. Finally, we prove an elementary property of the finite union of lacunary sequences." @default.
- W2952860180 created "2019-06-27" @default.
- W2952860180 creator A5063702241 @default.
- W2952860180 date "2009-01-01" @default.
- W2952860180 modified "2023-10-16" @default.
- W2952860180 title "Littlewood-Paley sets and sums of permuted lacunary sequences" @default.
- W2952860180 hasPublicationYear "2009" @default.
- W2952860180 type Work @default.
- W2952860180 sameAs 2952860180 @default.
- W2952860180 citedByCount "0" @default.
- W2952860180 crossrefType "journal-article" @default.
- W2952860180 hasAuthorship W2952860180A5063702241 @default.
- W2952860180 hasConcept C113174947 @default.
- W2952860180 hasConcept C114614502 @default.
- W2952860180 hasConcept C118615104 @default.
- W2952860180 hasConcept C2778067643 @default.
- W2952860180 hasConcept C2780990831 @default.
- W2952860180 hasConcept C33923547 @default.
- W2952860180 hasConcept C42812 @default.
- W2952860180 hasConcept C63356602 @default.
- W2952860180 hasConceptScore W2952860180C113174947 @default.
- W2952860180 hasConceptScore W2952860180C114614502 @default.
- W2952860180 hasConceptScore W2952860180C118615104 @default.
- W2952860180 hasConceptScore W2952860180C2778067643 @default.
- W2952860180 hasConceptScore W2952860180C2780990831 @default.
- W2952860180 hasConceptScore W2952860180C33923547 @default.
- W2952860180 hasConceptScore W2952860180C42812 @default.
- W2952860180 hasConceptScore W2952860180C63356602 @default.
- W2952860180 hasLocation W29528601801 @default.
- W2952860180 hasOpenAccess W2952860180 @default.
- W2952860180 hasPrimaryLocation W29528601801 @default.
- W2952860180 hasRelatedWork W174650961 @default.
- W2952860180 hasRelatedWork W1884539522 @default.
- W2952860180 hasRelatedWork W1981685960 @default.
- W2952860180 hasRelatedWork W2007987980 @default.
- W2952860180 hasRelatedWork W2020939254 @default.
- W2952860180 hasRelatedWork W2033036172 @default.
- W2952860180 hasRelatedWork W2048738724 @default.
- W2952860180 hasRelatedWork W2052488929 @default.
- W2952860180 hasRelatedWork W2061761364 @default.
- W2952860180 hasRelatedWork W2111884873 @default.
- W2952860180 hasRelatedWork W2146234533 @default.
- W2952860180 hasRelatedWork W2252688562 @default.
- W2952860180 hasRelatedWork W2340102191 @default.
- W2952860180 hasRelatedWork W2554896927 @default.
- W2952860180 hasRelatedWork W2593638184 @default.
- W2952860180 hasRelatedWork W2904436519 @default.
- W2952860180 hasRelatedWork W2963386103 @default.
- W2952860180 hasRelatedWork W2963774459 @default.
- W2952860180 hasRelatedWork W3035835742 @default.
- W2952860180 hasRelatedWork W3207102096 @default.
- W2952860180 isParatext "false" @default.
- W2952860180 isRetracted "false" @default.
- W2952860180 magId "2952860180" @default.
- W2952860180 workType "article" @default.