Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952881314> ?p ?o ?g. }
- W2952881314 endingPage "158" @default.
- W2952881314 startingPage "148" @default.
- W2952881314 abstract "SUMMARY Magnetite is an abundant magnetic mineral that commonly records the ancient magnetic field in a wide variety of rock types. When cooled below ≈124 K, magnetite undergoes a phase transition, called the Verwey transition, whose characteristics are highly sensitive to grain size and stoichiometry. Studying the Verwey transition thus yields information on the formation conditions and compositions of rocks. The transition is also stress sensitive, thereby opening an avenue to understanding a rock’s strain history; however, the reason for the stress sensitivity is poorly understood. In particular, the temperature of the transition decreases when measured under pressure, yet mostly increases upon pressure release. Moreover, the stress sensitivity of the transition as a function of dopant concentration, especially after pressure cycling, was never systematically tested. We addressed these issues in order to further develop magnetite as a pressure gauge. Multidomain magnetite samples were pressure cycled up to maximum pressures of ∼5 GPa at room temperature to measure the influence of strain on the Verwey transition temperature as a function of dopant concentration after full decompression. The transition temperature measured via changes in magnetic remanence ($T_{rm V}^{M}$) systematically increased with respect to pressure (P) in more doped samples, where domain wall pinning from impurities dominates $mathrm{d}T_{rm V} ^{rm M}/mathrm{d}P$. In less doped samples, no to only moderate pressure cycling dependence on $T_{rm V}^{rm M}$ was observed. Bulk coercive force (Bc) and magnetic remanence after saturation (Mrs) measured above or below the transition also increased with respect to pressure, but here effects related to permanent strain of the lattice structure prevail, and Bc versus P is steeper for less doped samples. Bc versus P increases in all cases, with a difference in slope dictated by dopant concentrations segregating the first to second-order nature of the transition. Thus, strain developed during pressure cycling controls $T_{rm V}^{rm M}$ and coercivity by a mechanism based on pinning of magnetic domains by both interstitial cations and structural lattice distortions. The combined observables, $T_{rm V}^{rm M}$ and Bc−Mrs, reflect both the dopant level and strain state of magnetite, which can quantify the pressure multidomain magnetite has experienced, especially in the range between 1 and 5 GPa. Based on these new results, we present a model that distinguishes between electronic versus defect-driven processes explaining the strain-related influences on the transition. Magnetite’s use as a geobarometer is thus a measure of its defect state, which is expressed through two somewhat independent mechanisms when sensed by magnetic observations." @default.
- W2952881314 created "2019-06-27" @default.
- W2952881314 creator A5003168538 @default.
- W2952881314 creator A5030187919 @default.
- W2952881314 creator A5031503613 @default.
- W2952881314 creator A5038653380 @default.
- W2952881314 creator A5047564912 @default.
- W2952881314 creator A5051392952 @default.
- W2952881314 creator A5057475727 @default.
- W2952881314 creator A5079038530 @default.
- W2952881314 creator A5079341935 @default.
- W2952881314 creator A5081545694 @default.
- W2952881314 date "2019-06-12" @default.
- W2952881314 modified "2023-10-18" @default.
- W2952881314 title "The influence of strain on the Verwey transition as a function of dopant concentration: towards a geobarometer for magnetite-bearing rocks" @default.
- W2952881314 cites W1547013486 @default.
- W2952881314 cites W1631008213 @default.
- W2952881314 cites W1631894762 @default.
- W2952881314 cites W1667422479 @default.
- W2952881314 cites W1677145845 @default.
- W2952881314 cites W1976087111 @default.
- W2952881314 cites W1982306513 @default.
- W2952881314 cites W1983731399 @default.
- W2952881314 cites W1987545897 @default.
- W2952881314 cites W1988826050 @default.
- W2952881314 cites W1998981899 @default.
- W2952881314 cites W2000554960 @default.
- W2952881314 cites W2000595639 @default.
- W2952881314 cites W2006126094 @default.
- W2952881314 cites W2009861823 @default.
- W2952881314 cites W2014221698 @default.
- W2952881314 cites W2015284795 @default.
- W2952881314 cites W2020696334 @default.
- W2952881314 cites W2026866974 @default.
- W2952881314 cites W2031945526 @default.
- W2952881314 cites W2041316120 @default.
- W2952881314 cites W2052128667 @default.
- W2952881314 cites W2052167612 @default.
- W2952881314 cites W2060077763 @default.
- W2952881314 cites W2060935329 @default.
- W2952881314 cites W2062004954 @default.
- W2952881314 cites W2068041379 @default.
- W2952881314 cites W2072877286 @default.
- W2952881314 cites W2073225840 @default.
- W2952881314 cites W2073651717 @default.
- W2952881314 cites W2074920995 @default.
- W2952881314 cites W2079814662 @default.
- W2952881314 cites W2080457956 @default.
- W2952881314 cites W2087724715 @default.
- W2952881314 cites W2091454095 @default.
- W2952881314 cites W2102461669 @default.
- W2952881314 cites W2104649441 @default.
- W2952881314 cites W2114450502 @default.
- W2952881314 cites W2140895454 @default.
- W2952881314 cites W2153211375 @default.
- W2952881314 cites W2167786079 @default.
- W2952881314 cites W2210475626 @default.
- W2952881314 cites W2281488369 @default.
- W2952881314 cites W2395029007 @default.
- W2952881314 cites W2548817615 @default.
- W2952881314 cites W2589335446 @default.
- W2952881314 cites W2776389628 @default.
- W2952881314 cites W2790964671 @default.
- W2952881314 cites W2793864454 @default.
- W2952881314 cites W2910273626 @default.
- W2952881314 cites W2949961622 @default.
- W2952881314 cites W4237480569 @default.
- W2952881314 doi "https://doi.org/10.1093/gji/ggz274" @default.
- W2952881314 hasPublicationYear "2019" @default.
- W2952881314 type Work @default.
- W2952881314 sameAs 2952881314 @default.
- W2952881314 citedByCount "7" @default.
- W2952881314 countsByYear W29528813142020 @default.
- W2952881314 countsByYear W29528813142021 @default.
- W2952881314 countsByYear W29528813142022 @default.
- W2952881314 crossrefType "journal-article" @default.
- W2952881314 hasAuthorship W2952881314A5003168538 @default.
- W2952881314 hasAuthorship W2952881314A5030187919 @default.
- W2952881314 hasAuthorship W2952881314A5031503613 @default.
- W2952881314 hasAuthorship W2952881314A5038653380 @default.
- W2952881314 hasAuthorship W2952881314A5047564912 @default.
- W2952881314 hasAuthorship W2952881314A5051392952 @default.
- W2952881314 hasAuthorship W2952881314A5057475727 @default.
- W2952881314 hasAuthorship W2952881314A5079038530 @default.
- W2952881314 hasAuthorship W2952881314A5079341935 @default.
- W2952881314 hasAuthorship W2952881314A5081545694 @default.
- W2952881314 hasConcept C113196181 @default.
- W2952881314 hasConcept C115260700 @default.
- W2952881314 hasConcept C121332964 @default.
- W2952881314 hasConcept C127313418 @default.
- W2952881314 hasConcept C155058782 @default.
- W2952881314 hasConcept C159176642 @default.
- W2952881314 hasConcept C178790620 @default.
- W2952881314 hasConcept C185592680 @default.
- W2952881314 hasConcept C188082385 @default.
- W2952881314 hasConcept C191897082 @default.
- W2952881314 hasConcept C191952053 @default.
- W2952881314 hasConcept C192562407 @default.