Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952901735> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2952901735 endingPage "246" @default.
- W2952901735 startingPage "232" @default.
- W2952901735 abstract "This paper presents a novel method to determine the optimal Multi-layer Perceptron structure using Linear Regression. Starting from clustering the dataset used to train a neural network it is possible to define Multiple Linear Regression models to determine the architecture of a neural network. This method work unsupervised unlike other methods and more flexible with different datasets types. The proposed method adapt to the complexity of training datasets to provide the best results regardless of the size and type of dataset. Clustering algorithm used to impose a specific analysis of data used to train the network such us determining the distance measure, normalization and clustering technique suitable with the type of training dataset used." @default.
- W2952901735 created "2019-06-27" @default.
- W2952901735 creator A5016608181 @default.
- W2952901735 creator A5042610306 @default.
- W2952901735 date "2019-01-01" @default.
- W2952901735 modified "2023-10-18" @default.
- W2952901735 title "Determining Optimal Multi-layer Perceptron Structure Using Linear Regression" @default.
- W2952901735 cites W1566763778 @default.
- W2952901735 cites W1621450212 @default.
- W2952901735 cites W1823350575 @default.
- W2952901735 cites W1972567154 @default.
- W2952901735 cites W1979171603 @default.
- W2952901735 cites W1987366756 @default.
- W2952901735 cites W2013882703 @default.
- W2952901735 cites W2025979508 @default.
- W2952901735 cites W2029869759 @default.
- W2952901735 cites W2044210752 @default.
- W2952901735 cites W2044958951 @default.
- W2952901735 cites W2075117036 @default.
- W2952901735 cites W2094510831 @default.
- W2952901735 cites W2097486709 @default.
- W2952901735 cites W2122555177 @default.
- W2952901735 cites W2135760566 @default.
- W2952901735 cites W2137356002 @default.
- W2952901735 cites W2141585940 @default.
- W2952901735 cites W2146594455 @default.
- W2952901735 cites W2156247618 @default.
- W2952901735 cites W2159401492 @default.
- W2952901735 cites W2171832470 @default.
- W2952901735 cites W2294032618 @default.
- W2952901735 cites W2552737632 @default.
- W2952901735 cites W4235145261 @default.
- W2952901735 cites W4240053199 @default.
- W2952901735 cites W4301522255 @default.
- W2952901735 cites W566252697 @default.
- W2952901735 doi "https://doi.org/10.1007/978-3-030-20485-3_18" @default.
- W2952901735 hasPublicationYear "2019" @default.
- W2952901735 type Work @default.
- W2952901735 sameAs 2952901735 @default.
- W2952901735 citedByCount "3" @default.
- W2952901735 countsByYear W29529017352019 @default.
- W2952901735 countsByYear W29529017352021 @default.
- W2952901735 countsByYear W29529017352022 @default.
- W2952901735 crossrefType "book-chapter" @default.
- W2952901735 hasAuthorship W2952901735A5016608181 @default.
- W2952901735 hasAuthorship W2952901735A5042610306 @default.
- W2952901735 hasConcept C105795698 @default.
- W2952901735 hasConcept C119857082 @default.
- W2952901735 hasConcept C153180895 @default.
- W2952901735 hasConcept C154945302 @default.
- W2952901735 hasConcept C159985019 @default.
- W2952901735 hasConcept C192562407 @default.
- W2952901735 hasConcept C2779227376 @default.
- W2952901735 hasConcept C33923547 @default.
- W2952901735 hasConcept C41008148 @default.
- W2952901735 hasConcept C48921125 @default.
- W2952901735 hasConcept C50644808 @default.
- W2952901735 hasConcept C60908668 @default.
- W2952901735 hasConcept C83546350 @default.
- W2952901735 hasConceptScore W2952901735C105795698 @default.
- W2952901735 hasConceptScore W2952901735C119857082 @default.
- W2952901735 hasConceptScore W2952901735C153180895 @default.
- W2952901735 hasConceptScore W2952901735C154945302 @default.
- W2952901735 hasConceptScore W2952901735C159985019 @default.
- W2952901735 hasConceptScore W2952901735C192562407 @default.
- W2952901735 hasConceptScore W2952901735C2779227376 @default.
- W2952901735 hasConceptScore W2952901735C33923547 @default.
- W2952901735 hasConceptScore W2952901735C41008148 @default.
- W2952901735 hasConceptScore W2952901735C48921125 @default.
- W2952901735 hasConceptScore W2952901735C50644808 @default.
- W2952901735 hasConceptScore W2952901735C60908668 @default.
- W2952901735 hasConceptScore W2952901735C83546350 @default.
- W2952901735 hasLocation W29529017351 @default.
- W2952901735 hasOpenAccess W2952901735 @default.
- W2952901735 hasPrimaryLocation W29529017351 @default.
- W2952901735 hasRelatedWork W1902766772 @default.
- W2952901735 hasRelatedWork W2078674814 @default.
- W2952901735 hasRelatedWork W2086134489 @default.
- W2952901735 hasRelatedWork W2203557590 @default.
- W2952901735 hasRelatedWork W2338394561 @default.
- W2952901735 hasRelatedWork W2405544437 @default.
- W2952901735 hasRelatedWork W3021094884 @default.
- W2952901735 hasRelatedWork W3106494386 @default.
- W2952901735 hasRelatedWork W4220672327 @default.
- W2952901735 hasRelatedWork W4221160179 @default.
- W2952901735 isParatext "false" @default.
- W2952901735 isRetracted "false" @default.
- W2952901735 magId "2952901735" @default.
- W2952901735 workType "book-chapter" @default.