Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952935478> ?p ?o ?g. }
- W2952935478 endingPage "4009" @default.
- W2952935478 startingPage "3998" @default.
- W2952935478 abstract "Purpose The incorporation of cone-beam computed tomography (CBCT) has allowed for enhanced image-guided radiation therapy. While CBCT allows for daily 3D imaging, images suffer from severe artifacts, limiting the clinical potential of CBCT. In this work, a deep learning-based method for generating high quality corrected CBCT (CCBCT) images is proposed. Methods The proposed method integrates a residual block concept into a cycle-consistent adversarial network (cycle-GAN) framework, called res-cycle GAN, to learn a mapping between CBCT images and paired planning CT images. Compared with a GAN, a cycle-GAN includes an inverse transformation from CBCT to CT images, which constrains the model by forcing calculation of both a CCBCT and a synthetic CBCT. A fully convolution neural network with residual blocks is used in the generator to enable end-to-end CBCT-to-CT transformations. The proposed algorithm was evaluated using 24 sets of patient data in the brain and 20 sets of patient data in the pelvis. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC) indices, and spatial non-uniformity (SNU) were used to quantify the correction accuracy of the proposed algorithm. The proposed method is compared to both a conventional scatter correction and another machine learning-based CBCT correction method. Results Overall, the MAE, PSNR, NCC, and SNU were 13.0 HU, 37.5 dB, 0.99, and 0.05 in the brain, 16.1 HU, 30.7 dB, 0.98, and 0.09 in the pelvis for the proposed method, improvements of 45%, 16%, 1%, and 93% in the brain, and 71%, 38%, 2%, and 65% in the pelvis, over the CBCT image. The proposed method showed superior image quality as compared to the scatter correction method, reducing noise and artifact severity. The proposed method produced images with less noise and artifacts than the comparison machine learning-based method. Conclusions The authors have developed a novel deep learning-based method to generate high-quality corrected CBCT images. The proposed method increases onboard CBCT image quality, making it comparable to that of the planning CT. With further evaluation and clinical implementation, this method could lead to quantitative adaptive radiation therapy." @default.
- W2952935478 created "2019-06-27" @default.
- W2952935478 creator A5000658694 @default.
- W2952935478 creator A5001823365 @default.
- W2952935478 creator A5009731683 @default.
- W2952935478 creator A5011903902 @default.
- W2952935478 creator A5026088869 @default.
- W2952935478 creator A5030054597 @default.
- W2952935478 creator A5043052005 @default.
- W2952935478 creator A5049656223 @default.
- W2952935478 creator A5091162943 @default.
- W2952935478 date "2019-07-17" @default.
- W2952935478 modified "2023-10-14" @default.
- W2952935478 title "Paired cycle‐GAN‐based image correction for quantitative cone‐beam computed tomography" @default.
- W2952935478 cites W1982522100 @default.
- W2952935478 cites W1990157619 @default.
- W2952935478 cites W2041812800 @default.
- W2952935478 cites W2043193153 @default.
- W2952935478 cites W2060712246 @default.
- W2952935478 cites W2072021306 @default.
- W2952935478 cites W2073585401 @default.
- W2952935478 cites W2095520202 @default.
- W2952935478 cites W2171447090 @default.
- W2952935478 cites W2194775991 @default.
- W2952935478 cites W2208340121 @default.
- W2952935478 cites W2246298096 @default.
- W2952935478 cites W2470452803 @default.
- W2952935478 cites W2496177076 @default.
- W2952935478 cites W2592621044 @default.
- W2952935478 cites W2595534055 @default.
- W2952935478 cites W2620390813 @default.
- W2952935478 cites W2683216523 @default.
- W2952935478 cites W2767623272 @default.
- W2952935478 cites W2773345434 @default.
- W2952935478 cites W2890756907 @default.
- W2952935478 cites W2898680361 @default.
- W2952935478 cites W2898757811 @default.
- W2952935478 cites W2901953423 @default.
- W2952935478 cites W2902028397 @default.
- W2952935478 cites W2935627194 @default.
- W2952935478 cites W2962793481 @default.
- W2952935478 cites W2963176524 @default.
- W2952935478 cites W3103316509 @default.
- W2952935478 doi "https://doi.org/10.1002/mp.13656" @default.
- W2952935478 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7771209" @default.
- W2952935478 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31206709" @default.
- W2952935478 hasPublicationYear "2019" @default.
- W2952935478 type Work @default.
- W2952935478 sameAs 2952935478 @default.
- W2952935478 citedByCount "153" @default.
- W2952935478 countsByYear W29529354782019 @default.
- W2952935478 countsByYear W29529354782020 @default.
- W2952935478 countsByYear W29529354782021 @default.
- W2952935478 countsByYear W29529354782022 @default.
- W2952935478 countsByYear W29529354782023 @default.
- W2952935478 crossrefType "journal-article" @default.
- W2952935478 hasAuthorship W2952935478A5000658694 @default.
- W2952935478 hasAuthorship W2952935478A5001823365 @default.
- W2952935478 hasAuthorship W2952935478A5009731683 @default.
- W2952935478 hasAuthorship W2952935478A5011903902 @default.
- W2952935478 hasAuthorship W2952935478A5026088869 @default.
- W2952935478 hasAuthorship W2952935478A5030054597 @default.
- W2952935478 hasAuthorship W2952935478A5043052005 @default.
- W2952935478 hasAuthorship W2952935478A5049656223 @default.
- W2952935478 hasAuthorship W2952935478A5091162943 @default.
- W2952935478 hasBestOaLocation W29529354781 @default.
- W2952935478 hasConcept C104293457 @default.
- W2952935478 hasConcept C11413529 @default.
- W2952935478 hasConcept C115961682 @default.
- W2952935478 hasConcept C126838900 @default.
- W2952935478 hasConcept C154945302 @default.
- W2952935478 hasConcept C155512373 @default.
- W2952935478 hasConcept C2779813781 @default.
- W2952935478 hasConcept C2989005 @default.
- W2952935478 hasConcept C31601959 @default.
- W2952935478 hasConcept C33923547 @default.
- W2952935478 hasConcept C41008148 @default.
- W2952935478 hasConcept C544519230 @default.
- W2952935478 hasConcept C55020928 @default.
- W2952935478 hasConcept C71924100 @default.
- W2952935478 hasConcept C81363708 @default.
- W2952935478 hasConcept C9267231 @default.
- W2952935478 hasConceptScore W2952935478C104293457 @default.
- W2952935478 hasConceptScore W2952935478C11413529 @default.
- W2952935478 hasConceptScore W2952935478C115961682 @default.
- W2952935478 hasConceptScore W2952935478C126838900 @default.
- W2952935478 hasConceptScore W2952935478C154945302 @default.
- W2952935478 hasConceptScore W2952935478C155512373 @default.
- W2952935478 hasConceptScore W2952935478C2779813781 @default.
- W2952935478 hasConceptScore W2952935478C2989005 @default.
- W2952935478 hasConceptScore W2952935478C31601959 @default.
- W2952935478 hasConceptScore W2952935478C33923547 @default.
- W2952935478 hasConceptScore W2952935478C41008148 @default.
- W2952935478 hasConceptScore W2952935478C544519230 @default.
- W2952935478 hasConceptScore W2952935478C55020928 @default.
- W2952935478 hasConceptScore W2952935478C71924100 @default.
- W2952935478 hasConceptScore W2952935478C81363708 @default.
- W2952935478 hasConceptScore W2952935478C9267231 @default.