Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952947910> ?p ?o ?g. }
- W2952947910 endingPage "190" @default.
- W2952947910 startingPage "177" @default.
- W2952947910 abstract "This paper proposes a condition-based maintenance (CBM) policy for a deteriorating system whose state is monitored by a degraded sensor. In the literature of CBM, it is commonly assumed that inspection of system state is perfect or subject to measurement error. The health condition of the sensor, which is dedicated to inspect the system state, is completely ignored during system operation. However, due to the varying operation environment and aging effect, the sensor itself will suffer a degradation process and its performance deteriorates with time. In the presence of sensor degradation, the Kalman filter is employed in this paper to progressively estimate the system and the sensor state. Since the estimation of system state is subject to uncertainty, maintenance solely based on the estimated state will lead to a suboptimal solution. Instead, predictive reliability is used as a criterion for maintenance decision-making, which is able to incorporate the effect of estimation uncertainty. Preventive replacement is implemented when the estimated system reliability at inspection hits a specific threshold, which is obtained by minimizing the long-run maintenance cost rate. An example of wastewater treatment plant is used to illustrate the effectiveness of the proposed maintenance policy. It can be concluded through our research that: 1) disregarding the sensor degradation while it exists will significantly increase the maintenance cost and 2) the negative impact of sensor degradation can be diminished via proper inspection and filtering methods. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This paper was motivated by the observation of sensor degradation in wastewater treatment plants but the developed approach also applies to other systems such as manufacturing systems, chemical plants, and pharmaceutical factories, where sensors are dedicated to a long-time operation in a harsh environment. This paper investigates the impact of sensor degradation on CBM and suggests that the effect of sensor degradation should be carefully addressed while making maintenance decisions. Otherwise, it will lead to a suboptimal maintenance decision and increase the operating cost. An optimal maintenance decision, which contains the optimal inspection interval and reliability threshold, is achieved via minimizing the long-run cost rate. In the presence of measurement noise and intrinsic uncertainty from degradation, a stochastic filtering approach is employed to estimate the system and sensor state. Based on the estimated states and the calculated reliability, a dynamic maintenance decision is obtained at each inspection. This paper can be further extended considering non-Gaussian noise and alternative degradation processes." @default.
- W2952947910 created "2019-06-27" @default.
- W2952947910 creator A5010854199 @default.
- W2952947910 creator A5032341976 @default.
- W2952947910 creator A5058805192 @default.
- W2952947910 creator A5074443282 @default.
- W2952947910 date "2020-01-01" @default.
- W2952947910 modified "2023-10-09" @default.
- W2952947910 title "Stochastic Filtering Approach for Condition-Based Maintenance Considering Sensor Degradation" @default.
- W2952947910 cites W1567127779 @default.
- W2952947910 cites W1932372884 @default.
- W2952947910 cites W1963752479 @default.
- W2952947910 cites W1967639437 @default.
- W2952947910 cites W1994337132 @default.
- W2952947910 cites W2000999339 @default.
- W2952947910 cites W2007095112 @default.
- W2952947910 cites W2022851810 @default.
- W2952947910 cites W2025283432 @default.
- W2952947910 cites W2032975295 @default.
- W2952947910 cites W2042335353 @default.
- W2952947910 cites W2062562261 @default.
- W2952947910 cites W2064358326 @default.
- W2952947910 cites W2067266460 @default.
- W2952947910 cites W2073664987 @default.
- W2952947910 cites W2084232781 @default.
- W2952947910 cites W2086981746 @default.
- W2952947910 cites W2104794882 @default.
- W2952947910 cites W2110846827 @default.
- W2952947910 cites W2118395565 @default.
- W2952947910 cites W2127103870 @default.
- W2952947910 cites W2130499062 @default.
- W2952947910 cites W2137297477 @default.
- W2952947910 cites W2139591342 @default.
- W2952947910 cites W2156064084 @default.
- W2952947910 cites W2169572499 @default.
- W2952947910 cites W2221210133 @default.
- W2952947910 cites W2288947360 @default.
- W2952947910 cites W2310466376 @default.
- W2952947910 cites W2345306366 @default.
- W2952947910 cites W2406040543 @default.
- W2952947910 cites W2468457481 @default.
- W2952947910 cites W2524037503 @default.
- W2952947910 cites W2537002023 @default.
- W2952947910 cites W2554556296 @default.
- W2952947910 cites W2560317790 @default.
- W2952947910 cites W2599868532 @default.
- W2952947910 cites W2605528934 @default.
- W2952947910 cites W2611248258 @default.
- W2952947910 cites W2613456440 @default.
- W2952947910 cites W2621339217 @default.
- W2952947910 cites W2734758784 @default.
- W2952947910 cites W2745873639 @default.
- W2952947910 cites W2752122705 @default.
- W2952947910 cites W2799753289 @default.
- W2952947910 cites W2805531876 @default.
- W2952947910 cites W2809886006 @default.
- W2952947910 doi "https://doi.org/10.1109/tase.2019.2918734" @default.
- W2952947910 hasPublicationYear "2020" @default.
- W2952947910 type Work @default.
- W2952947910 sameAs 2952947910 @default.
- W2952947910 citedByCount "38" @default.
- W2952947910 countsByYear W29529479102020 @default.
- W2952947910 countsByYear W29529479102021 @default.
- W2952947910 countsByYear W29529479102022 @default.
- W2952947910 countsByYear W29529479102023 @default.
- W2952947910 crossrefType "journal-article" @default.
- W2952947910 hasAuthorship W2952947910A5010854199 @default.
- W2952947910 hasAuthorship W2952947910A5032341976 @default.
- W2952947910 hasAuthorship W2952947910A5058805192 @default.
- W2952947910 hasAuthorship W2952947910A5074443282 @default.
- W2952947910 hasBestOaLocation W29529479103 @default.
- W2952947910 hasConcept C106131492 @default.
- W2952947910 hasConcept C111919701 @default.
- W2952947910 hasConcept C11413529 @default.
- W2952947910 hasConcept C121332964 @default.
- W2952947910 hasConcept C127413603 @default.
- W2952947910 hasConcept C154945302 @default.
- W2952947910 hasConcept C157286648 @default.
- W2952947910 hasConcept C163258240 @default.
- W2952947910 hasConcept C200601418 @default.
- W2952947910 hasConcept C24090081 @default.
- W2952947910 hasConcept C2776907094 @default.
- W2952947910 hasConcept C2779679103 @default.
- W2952947910 hasConcept C31972630 @default.
- W2952947910 hasConcept C41008148 @default.
- W2952947910 hasConcept C43214815 @default.
- W2952947910 hasConcept C48103436 @default.
- W2952947910 hasConcept C62520636 @default.
- W2952947910 hasConcept C76155785 @default.
- W2952947910 hasConcept C79403827 @default.
- W2952947910 hasConcept C98045186 @default.
- W2952947910 hasConceptScore W2952947910C106131492 @default.
- W2952947910 hasConceptScore W2952947910C111919701 @default.
- W2952947910 hasConceptScore W2952947910C11413529 @default.
- W2952947910 hasConceptScore W2952947910C121332964 @default.
- W2952947910 hasConceptScore W2952947910C127413603 @default.
- W2952947910 hasConceptScore W2952947910C154945302 @default.
- W2952947910 hasConceptScore W2952947910C157286648 @default.