Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953027475> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2953027475 abstract "The dimension algebra of graded groups is introduced. With the help of known geometric results of extension theory that algebra induces all known results of the cohomological dimension theory. Elements of the algebra are equivalence classes $dim(A)$ of graded groups $A$. There are two geometric interpretations of those equivalence classes: linebreak 1. For pointed CW complexes $K$ and $L$, $dim(H_ast(K))=dim(H_ast(L))$ if and only if the infinite symmetric products $SP(K)$ and $SP(L)$ are of the same extension type (i.e., $SP(K)in AE(X)$ iff $SP(L)in AE(X)$ for all compact $X$). linebreak 2. For pointed compact spaces $X$ and $Y$, $dim(cal H^{-ast}(X))=dim(cal H^{-ast}(Y))$ if and only if $X$ and $Y$ are of the same dimension type (i.e., $dim_G(X)=dim_G(Y)$ for all Abelian groups $G$). Dranishnikov's version of Hurewicz Theorem in extension theory becomes $dim(pi_ast(K))=dim(H_ast(K))$ for all simply connected $K$. The concept of cohomological dimension $dim_A(X)$ of a pointed compact space $X$ with respect to a graded group $A$ is introduced. It turns out $dim_A(X)leq 0$ iff $dim_{A(n)}(X)leq n$ for all $ninZ$. If $A$ and $B$ are two positive graded groups, then $dim(A)=dim(B)$ if and only if $dim_A(X)=dim_B(X)$ for all compact $X$." @default.
- W2953027475 created "2019-06-27" @default.
- W2953027475 creator A5019822589 @default.
- W2953027475 date "2004-04-19" @default.
- W2953027475 modified "2023-09-27" @default.
- W2953027475 title "Algebra of dimension theory" @default.
- W2953027475 cites W1559327799 @default.
- W2953027475 cites W1775073222 @default.
- W2953027475 cites W1881209415 @default.
- W2953027475 cites W2019652369 @default.
- W2953027475 cites W2023846228 @default.
- W2953027475 cites W2078715348 @default.
- W2953027475 hasPublicationYear "2004" @default.
- W2953027475 type Work @default.
- W2953027475 sameAs 2953027475 @default.
- W2953027475 citedByCount "0" @default.
- W2953027475 crossrefType "posted-content" @default.
- W2953027475 hasAuthorship W2953027475A5019822589 @default.
- W2953027475 hasConcept C114614502 @default.
- W2953027475 hasConcept C121332964 @default.
- W2953027475 hasConcept C136119220 @default.
- W2953027475 hasConcept C136170076 @default.
- W2953027475 hasConcept C138885662 @default.
- W2953027475 hasConcept C18903297 @default.
- W2953027475 hasConcept C202444582 @default.
- W2953027475 hasConcept C2777299769 @default.
- W2953027475 hasConcept C2778332477 @default.
- W2953027475 hasConcept C2778572836 @default.
- W2953027475 hasConcept C33676613 @default.
- W2953027475 hasConcept C33923547 @default.
- W2953027475 hasConcept C41895202 @default.
- W2953027475 hasConcept C78606066 @default.
- W2953027475 hasConcept C86803240 @default.
- W2953027475 hasConceptScore W2953027475C114614502 @default.
- W2953027475 hasConceptScore W2953027475C121332964 @default.
- W2953027475 hasConceptScore W2953027475C136119220 @default.
- W2953027475 hasConceptScore W2953027475C136170076 @default.
- W2953027475 hasConceptScore W2953027475C138885662 @default.
- W2953027475 hasConceptScore W2953027475C18903297 @default.
- W2953027475 hasConceptScore W2953027475C202444582 @default.
- W2953027475 hasConceptScore W2953027475C2777299769 @default.
- W2953027475 hasConceptScore W2953027475C2778332477 @default.
- W2953027475 hasConceptScore W2953027475C2778572836 @default.
- W2953027475 hasConceptScore W2953027475C33676613 @default.
- W2953027475 hasConceptScore W2953027475C33923547 @default.
- W2953027475 hasConceptScore W2953027475C41895202 @default.
- W2953027475 hasConceptScore W2953027475C78606066 @default.
- W2953027475 hasConceptScore W2953027475C86803240 @default.
- W2953027475 hasLocation W29530274751 @default.
- W2953027475 hasOpenAccess W2953027475 @default.
- W2953027475 hasPrimaryLocation W29530274751 @default.
- W2953027475 hasRelatedWork W1509225749 @default.
- W2953027475 hasRelatedWork W1581909654 @default.
- W2953027475 hasRelatedWork W1590969621 @default.
- W2953027475 hasRelatedWork W1596361392 @default.
- W2953027475 hasRelatedWork W1965900578 @default.
- W2953027475 hasRelatedWork W1966872701 @default.
- W2953027475 hasRelatedWork W1995375944 @default.
- W2953027475 hasRelatedWork W2028711281 @default.
- W2953027475 hasRelatedWork W2045418771 @default.
- W2953027475 hasRelatedWork W2058999334 @default.
- W2953027475 hasRelatedWork W2076046670 @default.
- W2953027475 hasRelatedWork W2083500790 @default.
- W2953027475 hasRelatedWork W2136856932 @default.
- W2953027475 hasRelatedWork W2308735322 @default.
- W2953027475 hasRelatedWork W2328270862 @default.
- W2953027475 hasRelatedWork W2949398624 @default.
- W2953027475 hasRelatedWork W2950614291 @default.
- W2953027475 hasRelatedWork W2951713550 @default.
- W2953027475 hasRelatedWork W2963967352 @default.
- W2953027475 hasRelatedWork W3013103162 @default.
- W2953027475 isParatext "false" @default.
- W2953027475 isRetracted "false" @default.
- W2953027475 magId "2953027475" @default.
- W2953027475 workType "article" @default.