Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953042022> ?p ?o ?g. }
- W2953042022 endingPage "137" @default.
- W2953042022 startingPage "125" @default.
- W2953042022 abstract "Intracranial recordings from patients implanted with depth electrodes are a valuable source of information in neuroscience. They allow for the unique opportunity to record brain activity with high spatial and temporal resolution. A common pre-processing choice in stereotactic EEG (S-EEG) is to re-reference the data with a bipolar montage. In this, each channel is subtracted from its neighbor, to reduce commonalities between channels and isolate activity that is spatially confined. We challenge the assumption that bipolar reference effectively performs this task. To extract local activity, the distribution of the signal source of interest, interfering distant signals, and noise need to be considered. Referencing schemes with fixed coefficients can decrease the signal to noise ratio (SNR) of the data, they can lead to mislocalization of activity and consequently to misinterpretation of results. We propose to use Independent Component Analysis (ICA), to derive filter coefficients that reflect the statistical dependencies of the data at hand. We describe and demonstrate this on human S-EEG recordings. In a simulation with real data, we quantitatively show that ICA outperforms the bipolar referencing operation in sensitivity and importantly in specificity when revealing local time series from the superposition of neighboring channels. We argue that ICA already performs the same task that bipolar referencing pursues, namely undoing the linear superposition of activity and will identify activity that is local. When investigating local sources in human S-EEG, ICA should be preferred over re-referencing the data with a bipolar montage." @default.
- W2953042022 created "2019-06-27" @default.
- W2953042022 creator A5001422049 @default.
- W2953042022 creator A5011062278 @default.
- W2953042022 creator A5012219181 @default.
- W2953042022 creator A5023402931 @default.
- W2953042022 creator A5026609497 @default.
- W2953042022 creator A5045767287 @default.
- W2953042022 creator A5050871540 @default.
- W2953042022 creator A5058421819 @default.
- W2953042022 creator A5072973230 @default.
- W2953042022 creator A5073445921 @default.
- W2953042022 creator A5078024712 @default.
- W2953042022 creator A5078359358 @default.
- W2953042022 creator A5083963466 @default.
- W2953042022 creator A5084014156 @default.
- W2953042022 creator A5087500318 @default.
- W2953042022 date "2018-09-01" @default.
- W2953042022 modified "2023-10-10" @default.
- W2953042022 title "Data-driven re-referencing of intracranial EEG based on independent component analysis (ICA)" @default.
- W2953042022 cites W1563185661 @default.
- W2953042022 cites W1965555277 @default.
- W2953042022 cites W1976698619 @default.
- W2953042022 cites W1989700973 @default.
- W2953042022 cites W2014502281 @default.
- W2953042022 cites W2035978932 @default.
- W2953042022 cites W2056555744 @default.
- W2953042022 cites W2089013992 @default.
- W2953042022 cites W2093933041 @default.
- W2953042022 cites W2099741732 @default.
- W2953042022 cites W2101135654 @default.
- W2953042022 cites W2103032521 @default.
- W2953042022 cites W2103481737 @default.
- W2953042022 cites W2104820572 @default.
- W2953042022 cites W2111406028 @default.
- W2953042022 cites W2123649031 @default.
- W2953042022 cites W2128495200 @default.
- W2953042022 cites W2128755206 @default.
- W2953042022 cites W2139886607 @default.
- W2953042022 cites W2149284055 @default.
- W2953042022 cites W2151091968 @default.
- W2953042022 cites W2162799770 @default.
- W2953042022 cites W2166073443 @default.
- W2953042022 cites W2166159048 @default.
- W2953042022 cites W2168036349 @default.
- W2953042022 cites W2237409640 @default.
- W2953042022 cites W2281087329 @default.
- W2953042022 cites W2301449719 @default.
- W2953042022 cites W2308431372 @default.
- W2953042022 cites W2514877170 @default.
- W2953042022 cites W2565156473 @default.
- W2953042022 cites W2602633288 @default.
- W2953042022 cites W2953172531 @default.
- W2953042022 cites W3104310497 @default.
- W2953042022 cites W4241074797 @default.
- W2953042022 cites W4366067752 @default.
- W2953042022 doi "https://doi.org/10.1016/j.jneumeth.2018.06.021" @default.
- W2953042022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29960028" @default.
- W2953042022 hasPublicationYear "2018" @default.
- W2953042022 type Work @default.
- W2953042022 sameAs 2953042022 @default.
- W2953042022 citedByCount "36" @default.
- W2953042022 countsByYear W29530420222019 @default.
- W2953042022 countsByYear W29530420222020 @default.
- W2953042022 countsByYear W29530420222021 @default.
- W2953042022 countsByYear W29530420222022 @default.
- W2953042022 countsByYear W29530420222023 @default.
- W2953042022 crossrefType "journal-article" @default.
- W2953042022 hasAuthorship W2953042022A5001422049 @default.
- W2953042022 hasAuthorship W2953042022A5011062278 @default.
- W2953042022 hasAuthorship W2953042022A5012219181 @default.
- W2953042022 hasAuthorship W2953042022A5023402931 @default.
- W2953042022 hasAuthorship W2953042022A5026609497 @default.
- W2953042022 hasAuthorship W2953042022A5045767287 @default.
- W2953042022 hasAuthorship W2953042022A5050871540 @default.
- W2953042022 hasAuthorship W2953042022A5058421819 @default.
- W2953042022 hasAuthorship W2953042022A5072973230 @default.
- W2953042022 hasAuthorship W2953042022A5073445921 @default.
- W2953042022 hasAuthorship W2953042022A5078024712 @default.
- W2953042022 hasAuthorship W2953042022A5078359358 @default.
- W2953042022 hasAuthorship W2953042022A5083963466 @default.
- W2953042022 hasAuthorship W2953042022A5084014156 @default.
- W2953042022 hasAuthorship W2953042022A5087500318 @default.
- W2953042022 hasBestOaLocation W29530420222 @default.
- W2953042022 hasConcept C106131492 @default.
- W2953042022 hasConcept C115961682 @default.
- W2953042022 hasConcept C120317606 @default.
- W2953042022 hasConcept C127162648 @default.
- W2953042022 hasConcept C134306372 @default.
- W2953042022 hasConcept C153180895 @default.
- W2953042022 hasConcept C154945302 @default.
- W2953042022 hasConcept C15744967 @default.
- W2953042022 hasConcept C169760540 @default.
- W2953042022 hasConcept C27753989 @default.
- W2953042022 hasConcept C28490314 @default.
- W2953042022 hasConcept C31258907 @default.
- W2953042022 hasConcept C31972630 @default.
- W2953042022 hasConcept C33923547 @default.