Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953068105> ?p ?o ?g. }
- W2953068105 endingPage "641" @default.
- W2953068105 startingPage "591" @default.
- W2953068105 abstract "Dense granular flows can spontaneously self-channelise by forming a pair of parallel-sided static levees on either side of a central flowing channel. This process prevents lateral spreading and maintains the flow thickness, and hence mobility, enabling the grains to run out considerably further than a spreading flow on shallow slopes. Since levees commonly form in hazardous geophysical mass flows, such as snow avalanches, debris flows, lahars and pyroclastic flows, this has important implications for risk management in mountainous and volcanic regions. In this paper an avalanche model that incorporates frictional hysteresis, as well as depth-averaged viscous terms derived from the $unicode[STIX]{x1D707}(I)$ -rheology, is used to quantitatively model self-channelisation and levee formation. The viscous terms are crucial for determining a smoothly varying steady-state velocity profile across the flowing channel, which has the important property that it does not exert any shear stresses at the levee–channel interfaces. For a fixed mass flux, the resulting boundary value problem for the velocity profile also uniquely determines the width and height of the channel, and the predictions are in very good agreement with existing experimental data for both spherical and angular particles. It is also shown that in the absence of viscous (second-order gradient) terms, the problem degenerates, to produce plug flow in the channel with two frictionless contact discontinuities at the levee–channel margins. Such solutions are not observed in experiments. Moreover, the steady-state inviscid problem lacks a thickness or width selection mechanism and consequently there is no unique solution. The viscous theory is therefore a significant step forward. Fully time-dependent numerical simulations to the viscous model are able to quantitatively capture the process in which the flow self-channelises and show how the levees are initially emplaced behind the flow head. Both experiments and numerical simulations show that the height and width of the channel are not necessarily fixed by these initial values, but respond to changes in the supplied mass flux, allowing narrowing and widening of the channel long after the initial front has passed by. In addition, below a critical mass flux the steady-state solutions become unstable and time-dependent numerical simulations are able to capture the transition to periodic erosion–deposition waves observed in experiments." @default.
- W2953068105 created "2019-06-27" @default.
- W2953068105 creator A5018172246 @default.
- W2953068105 creator A5044996327 @default.
- W2953068105 creator A5089638140 @default.
- W2953068105 date "2019-08-05" @default.
- W2953068105 modified "2023-10-12" @default.
- W2953068105 title "Self-channelisation and levee formation in monodisperse granular flows" @default.
- W2953068105 cites W1536327124 @default.
- W2953068105 cites W1555627060 @default.
- W2953068105 cites W1974591473 @default.
- W2953068105 cites W1977326966 @default.
- W2953068105 cites W1979252893 @default.
- W2953068105 cites W1989902627 @default.
- W2953068105 cites W1992610821 @default.
- W2953068105 cites W2014001686 @default.
- W2953068105 cites W2016418052 @default.
- W2953068105 cites W2029783833 @default.
- W2953068105 cites W2030809536 @default.
- W2953068105 cites W2036774700 @default.
- W2953068105 cites W2044302809 @default.
- W2953068105 cites W2046392635 @default.
- W2953068105 cites W2049905360 @default.
- W2953068105 cites W2051896092 @default.
- W2953068105 cites W2063050805 @default.
- W2953068105 cites W2069044138 @default.
- W2953068105 cites W2069090730 @default.
- W2953068105 cites W2071054672 @default.
- W2953068105 cites W2082967880 @default.
- W2953068105 cites W2088260105 @default.
- W2953068105 cites W2094800197 @default.
- W2953068105 cites W2094989728 @default.
- W2953068105 cites W2095009154 @default.
- W2953068105 cites W2096794870 @default.
- W2953068105 cites W2097033979 @default.
- W2953068105 cites W2104004065 @default.
- W2953068105 cites W2104126037 @default.
- W2953068105 cites W2108561350 @default.
- W2953068105 cites W2110633255 @default.
- W2953068105 cites W2113507955 @default.
- W2953068105 cites W2116260332 @default.
- W2953068105 cites W2118829860 @default.
- W2953068105 cites W2124278893 @default.
- W2953068105 cites W2124774094 @default.
- W2953068105 cites W2127012547 @default.
- W2953068105 cites W2131222107 @default.
- W2953068105 cites W2135293503 @default.
- W2953068105 cites W2140844461 @default.
- W2953068105 cites W2143882171 @default.
- W2953068105 cites W2146537380 @default.
- W2953068105 cites W2156669471 @default.
- W2953068105 cites W2160017351 @default.
- W2953068105 cites W2164481395 @default.
- W2953068105 cites W2166185286 @default.
- W2953068105 cites W2316892416 @default.
- W2953068105 cites W2396893355 @default.
- W2953068105 cites W2523275656 @default.
- W2953068105 cites W2551159828 @default.
- W2953068105 cites W2588644263 @default.
- W2953068105 cites W2611914384 @default.
- W2953068105 cites W2616938422 @default.
- W2953068105 cites W273640880 @default.
- W2953068105 cites W2802534752 @default.
- W2953068105 cites W2942472547 @default.
- W2953068105 cites W2949055089 @default.
- W2953068105 cites W2964464237 @default.
- W2953068105 cites W3098356943 @default.
- W2953068105 cites W3098613537 @default.
- W2953068105 cites W3099176935 @default.
- W2953068105 cites W3099838267 @default.
- W2953068105 cites W3101379654 @default.
- W2953068105 cites W44849538 @default.
- W2953068105 doi "https://doi.org/10.1017/jfm.2019.518" @default.
- W2953068105 hasPublicationYear "2019" @default.
- W2953068105 type Work @default.
- W2953068105 sameAs 2953068105 @default.
- W2953068105 citedByCount "35" @default.
- W2953068105 countsByYear W29530681052019 @default.
- W2953068105 countsByYear W29530681052020 @default.
- W2953068105 countsByYear W29530681052021 @default.
- W2953068105 countsByYear W29530681052022 @default.
- W2953068105 countsByYear W29530681052023 @default.
- W2953068105 crossrefType "journal-article" @default.
- W2953068105 hasAuthorship W2953068105A5018172246 @default.
- W2953068105 hasAuthorship W2953068105A5044996327 @default.
- W2953068105 hasAuthorship W2953068105A5089638140 @default.
- W2953068105 hasBestOaLocation W29530681051 @default.
- W2953068105 hasConcept C121332964 @default.
- W2953068105 hasConcept C127313418 @default.
- W2953068105 hasConcept C187320778 @default.
- W2953068105 hasConcept C38349280 @default.
- W2953068105 hasConcept C57879066 @default.
- W2953068105 hasConcept C86252789 @default.
- W2953068105 hasConceptScore W2953068105C121332964 @default.
- W2953068105 hasConceptScore W2953068105C127313418 @default.
- W2953068105 hasConceptScore W2953068105C187320778 @default.
- W2953068105 hasConceptScore W2953068105C38349280 @default.
- W2953068105 hasConceptScore W2953068105C57879066 @default.