Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953077067> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2953077067 endingPage "681" @default.
- W2953077067 startingPage "673" @default.
- W2953077067 abstract "The purpose of this paper is to present a fast method to predict the radio frequency (RF) exposure for multi-configuration implantable devices in the magnetic resonance imaging (MRI) environment by using an artificial neural network (ANN). A synthesizing framework is developed to improve the ANN, of which the inputs are the geometric dimensions of the targeted device and the output is the peak 1-g average SAR (SAR <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1g</sub> ) of the device. The synthesizing framework integrates feature selection and performance optimization techniques, achieved by using the mean impact value (MIV) algorithm and genetic algorithm (GA), to identify the most impactful features and improve the performance of the ANN. The framework was implemented and validated with the samples of 576 implantable plate devices with various geometric dimensions. The dimensions of the device were determined by six parameters and the peak SAR <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1g</sub> of the devices was numerically calculated by using a full-wave electromagnetic solver based on the finite-difference time-domain method. The efficiency and accuracy of the proposed framework were systematically evaluated. Comparing with the unimproved ANN, the mean square error (MSE) of the predicted peak SAR <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1g</sub> decreased by 28.06% for the ANN using MIV algorithm, while the MSE decreased by 55.29% for the presented synthesizing framework. The MSE of the predicted peak SAR <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1g</sub> was 8.16 W <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> /kg <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> and the correlation between the predicted and calculated peak SAR <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1g</sub> was 0.994 for the improved ANN in the studied cases." @default.
- W2953077067 created "2019-06-27" @default.
- W2953077067 creator A5040710338 @default.
- W2953077067 creator A5051562321 @default.
- W2953077067 creator A5072224337 @default.
- W2953077067 creator A5072348250 @default.
- W2953077067 creator A5084117478 @default.
- W2953077067 date "2020-06-01" @default.
- W2953077067 modified "2023-10-18" @default.
- W2953077067 title "Prediction of MRI RF Exposure for Implantable Plate Devices Using Artificial Neural Network" @default.
- W2953077067 cites W1492042394 @default.
- W2953077067 cites W1995821905 @default.
- W2953077067 cites W2023692298 @default.
- W2953077067 cites W2029010243 @default.
- W2953077067 cites W2031282024 @default.
- W2953077067 cites W2036384654 @default.
- W2953077067 cites W2044040070 @default.
- W2953077067 cites W2047094503 @default.
- W2953077067 cites W2069046578 @default.
- W2953077067 cites W2071776930 @default.
- W2953077067 cites W2087849123 @default.
- W2953077067 cites W2137356002 @default.
- W2953077067 cites W2137983211 @default.
- W2953077067 cites W2155482699 @default.
- W2953077067 cites W2161294075 @default.
- W2953077067 cites W2397349486 @default.
- W2953077067 cites W2521884319 @default.
- W2953077067 cites W2751806633 @default.
- W2953077067 cites W2767123801 @default.
- W2953077067 cites W2783675951 @default.
- W2953077067 cites W2783887341 @default.
- W2953077067 cites W2811170429 @default.
- W2953077067 cites W2899179552 @default.
- W2953077067 cites W82247105 @default.
- W2953077067 doi "https://doi.org/10.1109/temc.2019.2916837" @default.
- W2953077067 hasPublicationYear "2020" @default.
- W2953077067 type Work @default.
- W2953077067 sameAs 2953077067 @default.
- W2953077067 citedByCount "15" @default.
- W2953077067 countsByYear W29530770672020 @default.
- W2953077067 countsByYear W29530770672021 @default.
- W2953077067 countsByYear W29530770672022 @default.
- W2953077067 countsByYear W29530770672023 @default.
- W2953077067 crossrefType "journal-article" @default.
- W2953077067 hasAuthorship W2953077067A5040710338 @default.
- W2953077067 hasAuthorship W2953077067A5051562321 @default.
- W2953077067 hasAuthorship W2953077067A5072224337 @default.
- W2953077067 hasAuthorship W2953077067A5072348250 @default.
- W2953077067 hasAuthorship W2953077067A5084117478 @default.
- W2953077067 hasConcept C105795698 @default.
- W2953077067 hasConcept C11413529 @default.
- W2953077067 hasConcept C139945424 @default.
- W2953077067 hasConcept C154945302 @default.
- W2953077067 hasConcept C33923547 @default.
- W2953077067 hasConcept C41008148 @default.
- W2953077067 hasConcept C50644808 @default.
- W2953077067 hasConcept C74064498 @default.
- W2953077067 hasConcept C76155785 @default.
- W2953077067 hasConceptScore W2953077067C105795698 @default.
- W2953077067 hasConceptScore W2953077067C11413529 @default.
- W2953077067 hasConceptScore W2953077067C139945424 @default.
- W2953077067 hasConceptScore W2953077067C154945302 @default.
- W2953077067 hasConceptScore W2953077067C33923547 @default.
- W2953077067 hasConceptScore W2953077067C41008148 @default.
- W2953077067 hasConceptScore W2953077067C50644808 @default.
- W2953077067 hasConceptScore W2953077067C74064498 @default.
- W2953077067 hasConceptScore W2953077067C76155785 @default.
- W2953077067 hasIssue "3" @default.
- W2953077067 hasLocation W29530770671 @default.
- W2953077067 hasOpenAccess W2953077067 @default.
- W2953077067 hasPrimaryLocation W29530770671 @default.
- W2953077067 hasRelatedWork W1592972299 @default.
- W2953077067 hasRelatedWork W2085381944 @default.
- W2953077067 hasRelatedWork W2332256921 @default.
- W2953077067 hasRelatedWork W2380313759 @default.
- W2953077067 hasRelatedWork W2386387936 @default.
- W2953077067 hasRelatedWork W2386767533 @default.
- W2953077067 hasRelatedWork W2392110728 @default.
- W2953077067 hasRelatedWork W2807954395 @default.
- W2953077067 hasRelatedWork W3133520697 @default.
- W2953077067 hasRelatedWork W1629725936 @default.
- W2953077067 hasVolume "62" @default.
- W2953077067 isParatext "false" @default.
- W2953077067 isRetracted "false" @default.
- W2953077067 magId "2953077067" @default.
- W2953077067 workType "article" @default.