Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953085912> ?p ?o ?g. }
- W2953085912 abstract "We give a deterministic algorithm for approximately counting satisfying assignments of a degree-$d$ polynomial threshold function (PTF). Given a degree-$d$ input polynomial $p(x_1,dots,x_n)$ over $R^n$ and a parameter $epsilon> 0$, our algorithm approximates $Pr_{x sim {-1,1}^n}[p(x) geq 0]$ to within an additive $pm epsilon$ in time $O_{d,epsilon}(1)cdot mathop{poly}(n^d)$. (Any sort of efficient multiplicative approximation is impossible even for randomized algorithms assuming $NPnot=RP$.) Note that the running time of our algorithm (as a function of $n^d$, the number of coefficients of a degree-$d$ PTF) is a emph{fixed} polynomial. The fastest previous algorithm for this problem (due to Kane), based on constructions of unconditional pseudorandom generators for degree-$d$ PTFs, runs in time $n^{O_{d,c}(1) cdot epsilon^{-c}}$ for all $c > 0$. The key novel contributions of this work are: A new multivariate central limit theorem, proved using tools from Malliavin calculus and Stein's Method. This new CLT shows that any collection of Gaussian polynomials with small eigenvalues must have a joint distribution which is very close to a multidimensional Gaussian distribution. A new decomposition of low-degree multilinear polynomials over Gaussian inputs. Roughly speaking we show that (up to some small error) any such polynomial can be decomposed into a bounded number of multilinear polynomials all of which have extremely small eigenvalues. We use these new ingredients to give a deterministic algorithm for a Gaussian-space version of the approximate counting problem, and then employ standard techniques for working with low-degree PTFs (invariance principles and regularity lemmas) to reduce the original approximate counting problem over the Boolean hypercube to the Gaussian version." @default.
- W2953085912 created "2019-06-27" @default.
- W2953085912 creator A5014866889 @default.
- W2953085912 creator A5081127804 @default.
- W2953085912 date "2013-11-27" @default.
- W2953085912 modified "2023-09-24" @default.
- W2953085912 title "Efficient deterministic approximate counting for low-degree polynomial threshold functions" @default.
- W2953085912 cites W1483560004 @default.
- W2953085912 cites W1582008706 @default.
- W2953085912 cites W1609370892 @default.
- W2953085912 cites W1678605565 @default.
- W2953085912 cites W1919816193 @default.
- W2953085912 cites W1932230915 @default.
- W2953085912 cites W1964089073 @default.
- W2953085912 cites W1979110822 @default.
- W2953085912 cites W1988425761 @default.
- W2953085912 cites W1997142544 @default.
- W2953085912 cites W2022644058 @default.
- W2953085912 cites W2040583004 @default.
- W2953085912 cites W2078134499 @default.
- W2953085912 cites W2078179989 @default.
- W2953085912 cites W2086789740 @default.
- W2953085912 cites W2090343294 @default.
- W2953085912 cites W2094654291 @default.
- W2953085912 cites W2097886040 @default.
- W2953085912 cites W2098730982 @default.
- W2953085912 cites W2102339446 @default.
- W2953085912 cites W2106458073 @default.
- W2953085912 cites W2106552140 @default.
- W2953085912 cites W2113364322 @default.
- W2953085912 cites W2114870555 @default.
- W2953085912 cites W2117439842 @default.
- W2953085912 cites W2119909607 @default.
- W2953085912 cites W2125212199 @default.
- W2953085912 cites W2136341714 @default.
- W2953085912 cites W2154935036 @default.
- W2953085912 cites W2163332813 @default.
- W2953085912 cites W2163338525 @default.
- W2953085912 cites W2166652312 @default.
- W2953085912 cites W2179261203 @default.
- W2953085912 cites W2567790317 @default.
- W2953085912 cites W2798707604 @default.
- W2953085912 cites W2798909945 @default.
- W2953085912 cites W2912052665 @default.
- W2953085912 cites W2949272238 @default.
- W2953085912 cites W2949291665 @default.
- W2953085912 cites W2950440990 @default.
- W2953085912 cites W2951857401 @default.
- W2953085912 cites W2952890787 @default.
- W2953085912 doi "https://doi.org/10.48550/arxiv.1311.7178" @default.
- W2953085912 hasPublicationYear "2013" @default.
- W2953085912 type Work @default.
- W2953085912 sameAs 2953085912 @default.
- W2953085912 citedByCount "0" @default.
- W2953085912 crossrefType "posted-content" @default.
- W2953085912 hasAuthorship W2953085912A5014866889 @default.
- W2953085912 hasAuthorship W2953085912A5081127804 @default.
- W2953085912 hasBestOaLocation W29530859121 @default.
- W2953085912 hasConcept C114614502 @default.
- W2953085912 hasConcept C118615104 @default.
- W2953085912 hasConcept C121332964 @default.
- W2953085912 hasConcept C128669082 @default.
- W2953085912 hasConcept C134306372 @default.
- W2953085912 hasConcept C14036430 @default.
- W2953085912 hasConcept C158693339 @default.
- W2953085912 hasConcept C163716315 @default.
- W2953085912 hasConcept C202444582 @default.
- W2953085912 hasConcept C24890656 @default.
- W2953085912 hasConcept C25878781 @default.
- W2953085912 hasConcept C2775997480 @default.
- W2953085912 hasConcept C33923547 @default.
- W2953085912 hasConcept C34388435 @default.
- W2953085912 hasConcept C62520636 @default.
- W2953085912 hasConcept C78458016 @default.
- W2953085912 hasConcept C84392682 @default.
- W2953085912 hasConcept C86803240 @default.
- W2953085912 hasConcept C90119067 @default.
- W2953085912 hasConceptScore W2953085912C114614502 @default.
- W2953085912 hasConceptScore W2953085912C118615104 @default.
- W2953085912 hasConceptScore W2953085912C121332964 @default.
- W2953085912 hasConceptScore W2953085912C128669082 @default.
- W2953085912 hasConceptScore W2953085912C134306372 @default.
- W2953085912 hasConceptScore W2953085912C14036430 @default.
- W2953085912 hasConceptScore W2953085912C158693339 @default.
- W2953085912 hasConceptScore W2953085912C163716315 @default.
- W2953085912 hasConceptScore W2953085912C202444582 @default.
- W2953085912 hasConceptScore W2953085912C24890656 @default.
- W2953085912 hasConceptScore W2953085912C25878781 @default.
- W2953085912 hasConceptScore W2953085912C2775997480 @default.
- W2953085912 hasConceptScore W2953085912C33923547 @default.
- W2953085912 hasConceptScore W2953085912C34388435 @default.
- W2953085912 hasConceptScore W2953085912C62520636 @default.
- W2953085912 hasConceptScore W2953085912C78458016 @default.
- W2953085912 hasConceptScore W2953085912C84392682 @default.
- W2953085912 hasConceptScore W2953085912C86803240 @default.
- W2953085912 hasConceptScore W2953085912C90119067 @default.
- W2953085912 hasLocation W29530859121 @default.
- W2953085912 hasOpenAccess W2953085912 @default.
- W2953085912 hasPrimaryLocation W29530859121 @default.
- W2953085912 hasRelatedWork W1871156538 @default.