Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953128081> ?p ?o ?g. }
- W2953128081 endingPage "1108" @default.
- W2953128081 startingPage "1096" @default.
- W2953128081 abstract "De novo design seeks to generate molecules with required property profiles by virtual design-make-test cycles. With the emergence of deep learning and neural generative models in many application areas, models for molecular design based on neural networks appeared recently and show promising results. However, the new models have not been profiled on consistent tasks, and comparative studies to well-established algorithms have only seldom been performed. To standardize the assessment of both classical and neural models for de novo molecular design, we propose an evaluation framework, GuacaMol, based on a suite of standardized benchmarks. The benchmark tasks encompass measuring the fidelity of the models to reproduce the property distribution of the training sets, the ability to generate novel molecules, the exploration and exploitation of chemical space, and a variety of single and multi-objective optimization tasks. The benchmarking open-source Python code, and a leaderboard can be found on https://benevolent.ai/guacamol" @default.
- W2953128081 created "2019-06-27" @default.
- W2953128081 creator A5007543032 @default.
- W2953128081 creator A5047012582 @default.
- W2953128081 creator A5072218846 @default.
- W2953128081 creator A5088744199 @default.
- W2953128081 date "2019-03-19" @default.
- W2953128081 modified "2023-10-11" @default.
- W2953128081 title "GuacaMol: Benchmarking Models for de Novo Molecular Design" @default.
- W2953128081 cites W1174108660 @default.
- W2953128081 cites W1500370019 @default.
- W2953128081 cites W1509196567 @default.
- W2953128081 cites W1578639442 @default.
- W2953128081 cites W1965555277 @default.
- W2953128081 cites W1975147762 @default.
- W2953128081 cites W1986176168 @default.
- W2953128081 cites W2009605433 @default.
- W2953128081 cites W2010328851 @default.
- W2953128081 cites W2011230643 @default.
- W2953128081 cites W2018176004 @default.
- W2953128081 cites W2022476850 @default.
- W2953128081 cites W2027478081 @default.
- W2953128081 cites W2033495141 @default.
- W2953128081 cites W2034549041 @default.
- W2953128081 cites W2040030948 @default.
- W2953128081 cites W2052226480 @default.
- W2953128081 cites W2064675550 @default.
- W2953128081 cites W2076063813 @default.
- W2953128081 cites W2080635178 @default.
- W2953128081 cites W2080914508 @default.
- W2953128081 cites W2096729078 @default.
- W2953128081 cites W2107160601 @default.
- W2953128081 cites W2108598243 @default.
- W2953128081 cites W2113454169 @default.
- W2953128081 cites W2114704115 @default.
- W2953128081 cites W2125426232 @default.
- W2953128081 cites W2176516200 @default.
- W2953128081 cites W2189911347 @default.
- W2953128081 cites W2300160852 @default.
- W2953128081 cites W2405035126 @default.
- W2953128081 cites W2476452061 @default.
- W2953128081 cites W2567534979 @default.
- W2953128081 cites W2578240541 @default.
- W2953128081 cites W2586869611 @default.
- W2953128081 cites W2594328795 @default.
- W2953128081 cites W2610148085 @default.
- W2953128081 cites W2736137960 @default.
- W2953128081 cites W2747592475 @default.
- W2953128081 cites W2765224015 @default.
- W2953128081 cites W2784270883 @default.
- W2953128081 cites W2785012661 @default.
- W2953128081 cites W2790808809 @default.
- W2953128081 cites W2793945656 @default.
- W2953128081 cites W2794994220 @default.
- W2953128081 cites W2805002767 @default.
- W2953128081 cites W2886049025 @default.
- W2953128081 cites W2887447356 @default.
- W2953128081 cites W2889555425 @default.
- W2953128081 cites W2891868449 @default.
- W2953128081 cites W2897337442 @default.
- W2953128081 cites W2900090807 @default.
- W2953128081 cites W2909048115 @default.
- W2953128081 cites W2941263485 @default.
- W2953128081 cites W2963028280 @default.
- W2953128081 cites W2963059228 @default.
- W2953128081 cites W2963445908 @default.
- W2953128081 cites W2963595537 @default.
- W2953128081 cites W2963609389 @default.
- W2953128081 cites W3098269892 @default.
- W2953128081 cites W3100751385 @default.
- W2953128081 cites W3100839802 @default.
- W2953128081 cites W3208395488 @default.
- W2953128081 cites W4230189600 @default.
- W2953128081 cites W4235112493 @default.
- W2953128081 cites W4248107770 @default.
- W2953128081 cites W4289436753 @default.
- W2953128081 doi "https://doi.org/10.1021/acs.jcim.8b00839" @default.
- W2953128081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30887799" @default.
- W2953128081 hasPublicationYear "2019" @default.
- W2953128081 type Work @default.
- W2953128081 sameAs 2953128081 @default.
- W2953128081 citedByCount "336" @default.
- W2953128081 countsByYear W29531280812019 @default.
- W2953128081 countsByYear W29531280812020 @default.
- W2953128081 countsByYear W29531280812021 @default.
- W2953128081 countsByYear W29531280812022 @default.
- W2953128081 countsByYear W29531280812023 @default.
- W2953128081 crossrefType "journal-article" @default.
- W2953128081 hasAuthorship W2953128081A5007543032 @default.
- W2953128081 hasAuthorship W2953128081A5047012582 @default.
- W2953128081 hasAuthorship W2953128081A5072218846 @default.
- W2953128081 hasAuthorship W2953128081A5088744199 @default.
- W2953128081 hasBestOaLocation W29531280811 @default.
- W2953128081 hasConcept C108583219 @default.
- W2953128081 hasConcept C119857082 @default.
- W2953128081 hasConcept C13280743 @default.
- W2953128081 hasConcept C144133560 @default.
- W2953128081 hasConcept C154945302 @default.