Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953172811> ?p ?o ?g. }
- W2953172811 abstract "Spectral clustering is one of the most effective clustering approaches that capture hidden cluster structures in the data. However, it does not scale well to large-scale problems due to its quadratic complexity in constructing similarity graphs and computing subsequent eigendecomposition. Although a number of methods have been proposed to accelerate spectral clustering, most of them compromise considerable information loss in the original data for reducing computational bottlenecks. In this paper, we present a novel scalable spectral clustering method using Random Binning features (RB) to simultaneously accelerate both similarity graph construction and the eigendecomposition. Specifically, we implicitly approximate the graph similarity (kernel) matrix by the inner product of a large sparse feature matrix generated by RB. Then we introduce a state-of-the-art SVD solver to effectively compute eigenvectors of this large matrix for spectral clustering. Using these two building blocks, we reduce the computational cost from quadratic to linear in the number of data points while achieving similar accuracy. Our theoretical analysis shows that spectral clustering via RB converges faster to the exact spectral clustering than the standard Random Feature approximation. Extensive experiments on 8 benchmarks show that the proposed method either outperforms or matches the state-of-the-art methods in both accuracy and runtime. Moreover, our method exhibits linear scalability in both the number of data samples and the number of RB features." @default.
- W2953172811 created "2019-06-27" @default.
- W2953172811 creator A5011825081 @default.
- W2953172811 creator A5028089542 @default.
- W2953172811 creator A5046151303 @default.
- W2953172811 creator A5050344371 @default.
- W2953172811 creator A5052933431 @default.
- W2953172811 creator A5073803011 @default.
- W2953172811 date "2018-05-25" @default.
- W2953172811 modified "2023-09-27" @default.
- W2953172811 title "Scalable Spectral Clustering Using Random Binning Features" @default.
- W2953172811 cites W1500351990 @default.
- W2953172811 cites W1516409914 @default.
- W2953172811 cites W1539831438 @default.
- W2953172811 cites W1555745080 @default.
- W2953172811 cites W1977556410 @default.
- W2953172811 cites W1986007546 @default.
- W2953172811 cites W2022704179 @default.
- W2953172811 cites W2047244756 @default.
- W2953172811 cites W2051549110 @default.
- W2953172811 cites W2055663168 @default.
- W2953172811 cites W2097820631 @default.
- W2953172811 cites W2116810533 @default.
- W2953172811 cites W2117530015 @default.
- W2953172811 cites W2121947440 @default.
- W2953172811 cites W2126337883 @default.
- W2953172811 cites W2128128915 @default.
- W2953172811 cites W2132914434 @default.
- W2953172811 cites W2134370969 @default.
- W2953172811 cites W2138995291 @default.
- W2953172811 cites W2144902422 @default.
- W2953172811 cites W2153635508 @default.
- W2953172811 cites W2252984395 @default.
- W2953172811 cites W2335903657 @default.
- W2953172811 cites W2393444374 @default.
- W2953172811 cites W2401290885 @default.
- W2953172811 cites W2466481865 @default.
- W2953172811 cites W255556494 @default.
- W2953172811 cites W2745001864 @default.
- W2953172811 cites W2785833512 @default.
- W2953172811 cites W2799186949 @default.
- W2953172811 cites W2963169996 @default.
- W2953172811 cites W2963655370 @default.
- W2953172811 cites W2964122166 @default.
- W2953172811 cites W3098912714 @default.
- W2953172811 cites W67721698 @default.
- W2953172811 doi "https://doi.org/10.48550/arxiv.1805.11048" @default.
- W2953172811 hasPublicationYear "2018" @default.
- W2953172811 type Work @default.
- W2953172811 sameAs 2953172811 @default.
- W2953172811 citedByCount "0" @default.
- W2953172811 crossrefType "posted-content" @default.
- W2953172811 hasAuthorship W2953172811A5011825081 @default.
- W2953172811 hasAuthorship W2953172811A5028089542 @default.
- W2953172811 hasAuthorship W2953172811A5046151303 @default.
- W2953172811 hasAuthorship W2953172811A5050344371 @default.
- W2953172811 hasAuthorship W2953172811A5052933431 @default.
- W2953172811 hasAuthorship W2953172811A5073803011 @default.
- W2953172811 hasBestOaLocation W29531728111 @default.
- W2953172811 hasConcept C105611402 @default.
- W2953172811 hasConcept C11413529 @default.
- W2953172811 hasConcept C121332964 @default.
- W2953172811 hasConcept C153180895 @default.
- W2953172811 hasConcept C154945302 @default.
- W2953172811 hasConcept C158693339 @default.
- W2953172811 hasConcept C169756996 @default.
- W2953172811 hasConcept C33704608 @default.
- W2953172811 hasConcept C33923547 @default.
- W2953172811 hasConcept C41008148 @default.
- W2953172811 hasConcept C48044578 @default.
- W2953172811 hasConcept C62520636 @default.
- W2953172811 hasConcept C73555534 @default.
- W2953172811 hasConcept C77088390 @default.
- W2953172811 hasConcept C94641424 @default.
- W2953172811 hasConceptScore W2953172811C105611402 @default.
- W2953172811 hasConceptScore W2953172811C11413529 @default.
- W2953172811 hasConceptScore W2953172811C121332964 @default.
- W2953172811 hasConceptScore W2953172811C153180895 @default.
- W2953172811 hasConceptScore W2953172811C154945302 @default.
- W2953172811 hasConceptScore W2953172811C158693339 @default.
- W2953172811 hasConceptScore W2953172811C169756996 @default.
- W2953172811 hasConceptScore W2953172811C33704608 @default.
- W2953172811 hasConceptScore W2953172811C33923547 @default.
- W2953172811 hasConceptScore W2953172811C41008148 @default.
- W2953172811 hasConceptScore W2953172811C48044578 @default.
- W2953172811 hasConceptScore W2953172811C62520636 @default.
- W2953172811 hasConceptScore W2953172811C73555534 @default.
- W2953172811 hasConceptScore W2953172811C77088390 @default.
- W2953172811 hasConceptScore W2953172811C94641424 @default.
- W2953172811 hasLocation W29531728111 @default.
- W2953172811 hasOpenAccess W2953172811 @default.
- W2953172811 hasPrimaryLocation W29531728111 @default.
- W2953172811 hasRelatedWork W1457719682 @default.
- W2953172811 hasRelatedWork W2021166720 @default.
- W2953172811 hasRelatedWork W2354640219 @default.
- W2953172811 hasRelatedWork W2644387904 @default.
- W2953172811 hasRelatedWork W2738424597 @default.
- W2953172811 hasRelatedWork W2775317516 @default.
- W2953172811 hasRelatedWork W3097084607 @default.
- W2953172811 hasRelatedWork W3199679192 @default.