Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953173859> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2953173859 abstract "Among the construction methods developed for tunneling, mechanized excavation by Tunnel Boring Machines (TBMs) is currently considered a preferred option for technical and safety reasons in an urban environment, where damage induced on pre-existing building and services should be minimized. Since the ability to predict TBM performances is a critical point required to enhance the quality of the excavation and to optimize time, cost and safety operations in a project and since real-time prediction should be done during excavation in order to adjust some parameters in very real-time, approaches based on Artificial Intelligence (AI) methodology could be crucial. This study proposes an expeditious tool based on the application of Artificial Intelligence and particularly Artificial Neural Networks (ANNs), to predict the maximum surface settlements induced by tunnelling. ANNs, taking advantage of the quality of data available and computational performances of software for data management, have been proved to be a reliable instrument in processes where a relevant number of parameters and acquired measurements have to be managed. Using data selected from the excavation of the Milan M5 metro line, the document includes details on the role played by several inner elements on the accuracy of the final prediction based on the comparison of several different ANN configurations. The obtained results showed a promising capability of the tool to swiftly predict surface settlements in mechanized tunneling projects." @default.
- W2953173859 created "2019-06-27" @default.
- W2953173859 creator A5008649802 @default.
- W2953173859 creator A5009329634 @default.
- W2953173859 creator A5015573431 @default.
- W2953173859 date "2019-06-23" @default.
- W2953173859 modified "2023-09-27" @default.
- W2953173859 title "Artificial Intelligence to Predict Maximum Surface Settlements Induced by Mechanized Tunnelling" @default.
- W2953173859 cites W1498436455 @default.
- W2953173859 cites W1984619576 @default.
- W2953173859 cites W1997423158 @default.
- W2953173859 cites W2006952036 @default.
- W2953173859 cites W2040870580 @default.
- W2953173859 cites W2046286795 @default.
- W2953173859 cites W2488405049 @default.
- W2953173859 cites W2495987757 @default.
- W2953173859 cites W2911483806 @default.
- W2953173859 doi "https://doi.org/10.1007/978-3-030-21359-6_52" @default.
- W2953173859 hasPublicationYear "2019" @default.
- W2953173859 type Work @default.
- W2953173859 sameAs 2953173859 @default.
- W2953173859 citedByCount "2" @default.
- W2953173859 countsByYear W29531738592020 @default.
- W2953173859 countsByYear W29531738592023 @default.
- W2953173859 crossrefType "book-chapter" @default.
- W2953173859 hasAuthorship W2953173859A5008649802 @default.
- W2953173859 hasAuthorship W2953173859A5009329634 @default.
- W2953173859 hasAuthorship W2953173859A5015573431 @default.
- W2953173859 hasConcept C111472728 @default.
- W2953173859 hasConcept C127413603 @default.
- W2953173859 hasConcept C138885662 @default.
- W2953173859 hasConcept C154945302 @default.
- W2953173859 hasConcept C16678853 @default.
- W2953173859 hasConcept C187320778 @default.
- W2953173859 hasConcept C2524010 @default.
- W2953173859 hasConcept C2779530757 @default.
- W2953173859 hasConcept C28719098 @default.
- W2953173859 hasConcept C31858485 @default.
- W2953173859 hasConcept C33923547 @default.
- W2953173859 hasConcept C41008148 @default.
- W2953173859 hasConcept C50644808 @default.
- W2953173859 hasConcept C548081761 @default.
- W2953173859 hasConceptScore W2953173859C111472728 @default.
- W2953173859 hasConceptScore W2953173859C127413603 @default.
- W2953173859 hasConceptScore W2953173859C138885662 @default.
- W2953173859 hasConceptScore W2953173859C154945302 @default.
- W2953173859 hasConceptScore W2953173859C16678853 @default.
- W2953173859 hasConceptScore W2953173859C187320778 @default.
- W2953173859 hasConceptScore W2953173859C2524010 @default.
- W2953173859 hasConceptScore W2953173859C2779530757 @default.
- W2953173859 hasConceptScore W2953173859C28719098 @default.
- W2953173859 hasConceptScore W2953173859C31858485 @default.
- W2953173859 hasConceptScore W2953173859C33923547 @default.
- W2953173859 hasConceptScore W2953173859C41008148 @default.
- W2953173859 hasConceptScore W2953173859C50644808 @default.
- W2953173859 hasConceptScore W2953173859C548081761 @default.
- W2953173859 hasLocation W29531738591 @default.
- W2953173859 hasOpenAccess W2953173859 @default.
- W2953173859 hasPrimaryLocation W29531738591 @default.
- W2953173859 hasRelatedWork W182483359 @default.
- W2953173859 hasRelatedWork W1915947783 @default.
- W2953173859 hasRelatedWork W2003759226 @default.
- W2953173859 hasRelatedWork W2004464244 @default.
- W2953173859 hasRelatedWork W2005357680 @default.
- W2953173859 hasRelatedWork W2011439940 @default.
- W2953173859 hasRelatedWork W2015441607 @default.
- W2953173859 hasRelatedWork W2129524612 @default.
- W2953173859 hasRelatedWork W2201008065 @default.
- W2953173859 hasRelatedWork W2360257076 @default.
- W2953173859 hasRelatedWork W2368623849 @default.
- W2953173859 hasRelatedWork W2387983676 @default.
- W2953173859 hasRelatedWork W2884945656 @default.
- W2953173859 hasRelatedWork W2946742630 @default.
- W2953173859 hasRelatedWork W2992010850 @default.
- W2953173859 hasRelatedWork W2997114442 @default.
- W2953173859 hasRelatedWork W3001819056 @default.
- W2953173859 hasRelatedWork W3009053062 @default.
- W2953173859 hasRelatedWork W3020974623 @default.
- W2953173859 hasRelatedWork W3138597920 @default.
- W2953173859 isParatext "false" @default.
- W2953173859 isRetracted "false" @default.
- W2953173859 magId "2953173859" @default.
- W2953173859 workType "book-chapter" @default.