Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953226791> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2953226791 abstract "Abstract Background Detecting patterns in high-dimensional multivariate datasets is non-trivial. Clustering and dimensionality reduction techniques often help in discerning inherent structures. In biological datasets such as microbial community composition or gene expression data, observations can be generated from a continuous process, often unknown. Estimating data points’ ‘natural ordering’ and their corresponding uncertainties can help researchers draw insights about the mechanisms involved. Results We introduce a Bayesian Unidimensional Scaling (BUDS) technique which extracts dominant sources of variation in high dimensional datasets and produces their visual data summaries, facilitating the exploration of a hidden continuum. The method maps multivariate data points to latent one-dimensional coordinates along their underlying trajectory, and provides estimated uncertainty bounds. By statistically modeling dissimilarities and applying a DiSTATIS registration method to their posterior samples, we are able to incorporate visualizations of uncertainties in the estimated data trajectory across different regions using confidence contours for individual data points. We also illustrate the estimated overall data density across different areas by including density clouds. One-dimensional coordinates recovered by BUDS help researchers discover sample attributes or covariates that are factors driving the main variability in a dataset. We demonstrated usefulness and accuracy of BUDS on a set of published microbiome 16S and RNA-seq and roll call data. Conclusions Our method effectively recovers and visualizes natural orderings present in datasets. Automatic visualization tools for data exploration and analysis are available at: https://nlhuong.shinyapps.io/visTrajectory/ ." @default.
- W2953226791 created "2019-06-27" @default.
- W2953226791 creator A5003674456 @default.
- W2953226791 creator A5042050820 @default.
- W2953226791 date "2017-07-18" @default.
- W2953226791 modified "2023-09-23" @default.
- W2953226791 title "Bayesian Unidimensional Scaling for visualizing uncertainty in high dimensional datasets with latent ordering of observations" @default.
- W2953226791 cites W1536497620 @default.
- W2953226791 cites W1540375479 @default.
- W2953226791 cites W1559049942 @default.
- W2953226791 cites W1874466506 @default.
- W2953226791 cites W1984883254 @default.
- W2953226791 cites W2004874250 @default.
- W2953226791 cites W2010207606 @default.
- W2953226791 cites W2060910587 @default.
- W2953226791 cites W2072970694 @default.
- W2953226791 cites W2112662632 @default.
- W2953226791 cites W2127175247 @default.
- W2953226791 cites W2173351748 @default.
- W2953226791 cites W2230625883 @default.
- W2953226791 cites W2316095770 @default.
- W2953226791 cites W2373831850 @default.
- W2953226791 cites W2422879816 @default.
- W2953226791 cites W3101671285 @default.
- W2953226791 cites W4205380271 @default.
- W2953226791 doi "https://doi.org/10.1101/163915" @default.
- W2953226791 hasPublicationYear "2017" @default.
- W2953226791 type Work @default.
- W2953226791 sameAs 2953226791 @default.
- W2953226791 citedByCount "0" @default.
- W2953226791 crossrefType "posted-content" @default.
- W2953226791 hasAuthorship W2953226791A5003674456 @default.
- W2953226791 hasAuthorship W2953226791A5042050820 @default.
- W2953226791 hasBestOaLocation W29532267911 @default.
- W2953226791 hasConcept C107673813 @default.
- W2953226791 hasConcept C119857082 @default.
- W2953226791 hasConcept C121332964 @default.
- W2953226791 hasConcept C124101348 @default.
- W2953226791 hasConcept C1276947 @default.
- W2953226791 hasConcept C13662910 @default.
- W2953226791 hasConcept C154945302 @default.
- W2953226791 hasConcept C161584116 @default.
- W2953226791 hasConcept C177264268 @default.
- W2953226791 hasConcept C199360897 @default.
- W2953226791 hasConcept C21080849 @default.
- W2953226791 hasConcept C36464697 @default.
- W2953226791 hasConcept C41008148 @default.
- W2953226791 hasConcept C58489278 @default.
- W2953226791 hasConcept C70518039 @default.
- W2953226791 hasConcept C73555534 @default.
- W2953226791 hasConcept C91682802 @default.
- W2953226791 hasConceptScore W2953226791C107673813 @default.
- W2953226791 hasConceptScore W2953226791C119857082 @default.
- W2953226791 hasConceptScore W2953226791C121332964 @default.
- W2953226791 hasConceptScore W2953226791C124101348 @default.
- W2953226791 hasConceptScore W2953226791C1276947 @default.
- W2953226791 hasConceptScore W2953226791C13662910 @default.
- W2953226791 hasConceptScore W2953226791C154945302 @default.
- W2953226791 hasConceptScore W2953226791C161584116 @default.
- W2953226791 hasConceptScore W2953226791C177264268 @default.
- W2953226791 hasConceptScore W2953226791C199360897 @default.
- W2953226791 hasConceptScore W2953226791C21080849 @default.
- W2953226791 hasConceptScore W2953226791C36464697 @default.
- W2953226791 hasConceptScore W2953226791C41008148 @default.
- W2953226791 hasConceptScore W2953226791C58489278 @default.
- W2953226791 hasConceptScore W2953226791C70518039 @default.
- W2953226791 hasConceptScore W2953226791C73555534 @default.
- W2953226791 hasConceptScore W2953226791C91682802 @default.
- W2953226791 hasLocation W29532267911 @default.
- W2953226791 hasLocation W29532267912 @default.
- W2953226791 hasOpenAccess W2953226791 @default.
- W2953226791 hasPrimaryLocation W29532267911 @default.
- W2953226791 hasRelatedWork W1489997237 @default.
- W2953226791 hasRelatedWork W149215449 @default.
- W2953226791 hasRelatedWork W1581752971 @default.
- W2953226791 hasRelatedWork W2060829018 @default.
- W2953226791 hasRelatedWork W2092501581 @default.
- W2953226791 hasRelatedWork W2116361347 @default.
- W2953226791 hasRelatedWork W2168257133 @default.
- W2953226791 hasRelatedWork W2170509298 @default.
- W2953226791 hasRelatedWork W2613671317 @default.
- W2953226791 hasRelatedWork W2754962167 @default.
- W2953226791 hasRelatedWork W2801708253 @default.
- W2953226791 hasRelatedWork W2884740671 @default.
- W2953226791 hasRelatedWork W2888090831 @default.
- W2953226791 hasRelatedWork W2982301450 @default.
- W2953226791 hasRelatedWork W3034359646 @default.
- W2953226791 hasRelatedWork W3045412769 @default.
- W2953226791 hasRelatedWork W3080778113 @default.
- W2953226791 hasRelatedWork W3118541802 @default.
- W2953226791 hasRelatedWork W3146600800 @default.
- W2953226791 hasRelatedWork W3163449140 @default.
- W2953226791 isParatext "false" @default.
- W2953226791 isRetracted "false" @default.
- W2953226791 magId "2953226791" @default.
- W2953226791 workType "article" @default.