Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953233419> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2953233419 endingPage "98" @default.
- W2953233419 startingPage "86" @default.
- W2953233419 abstract "This paper investigates the visual classification of the 10 skin lesions most commonly encountered in a clinical setting (including melanoma (MEL) and melanocytic nevi (ML)), unlike the majority of previous research that focuses solely on melanoma versus melanocytic nevi classification. Two families of architectures are explored: (1) semi-learned hierarchical classifiers and (2) deep net classifiers. Although many applications have benefited by switching to a deep net architecture, here there is little accuracy benefit: hierarchical KNN classifier 78.1%, flat deep net 78.7% and refined hierarchical deep net 80.1% (all 5 fold cross-validated). The classifiers have comparable or higher accuracy than the five previous research results that have used the Edinburgh DERMOFIT 10 lesion class dataset. More importantly, from a clinical perspective, the proposed hierarchical KNN approach produces: (1) 99.5% separation of melanoma from melanocytic nevi (76 MEL & 331 ML samples), (2) 100% separation of melanoma from seborrheic keratosis (SK) (76 MEL & 256 SK samples), and (3) 90.6% separation of basal cell carcinoma (BCC) plus squamous cell carcinoma (SCC) from seborrheic keratosis (SK) (327 BCC/SCC & 256 SK samples). Moreover, combining classes BCC/SCC & ML/SK to give a modified 8 class hierarchical KNN classifier gives a considerably improved 87.1% accuracy. On the other hand, the deepnet binary cancer/non-cancer classifier had better performance (0.913) than the KNN classifier (0.874). In conclusion, there is not much difference between the two families of approaches, and that performance is approaching clinically useful rates." @default.
- W2953233419 created "2019-06-27" @default.
- W2953233419 creator A5020686179 @default.
- W2953233419 creator A5023118187 @default.
- W2953233419 creator A5029430064 @default.
- W2953233419 date "2020-01-01" @default.
- W2953233419 modified "2023-09-24" @default.
- W2953233419 title "Classification of Ten Skin Lesion Classes: Hierarchical KNN versus Deep Net" @default.
- W2953233419 cites W1480009832 @default.
- W2953233419 cites W1940903118 @default.
- W2953233419 cites W1952697361 @default.
- W2953233419 cites W1998451602 @default.
- W2953233419 cites W2044465660 @default.
- W2953233419 cites W2078187356 @default.
- W2953233419 cites W2100111947 @default.
- W2953233419 cites W2194775991 @default.
- W2953233419 cites W2426942631 @default.
- W2953233419 cites W2526259914 @default.
- W2953233419 cites W2581082771 @default.
- W2953233419 cites W2890655382 @default.
- W2953233419 doi "https://doi.org/10.1007/978-3-030-39343-4_8" @default.
- W2953233419 hasPublicationYear "2020" @default.
- W2953233419 type Work @default.
- W2953233419 sameAs 2953233419 @default.
- W2953233419 citedByCount "2" @default.
- W2953233419 countsByYear W29532334192022 @default.
- W2953233419 countsByYear W29532334192023 @default.
- W2953233419 crossrefType "book-chapter" @default.
- W2953233419 hasAuthorship W2953233419A5020686179 @default.
- W2953233419 hasAuthorship W2953233419A5023118187 @default.
- W2953233419 hasAuthorship W2953233419A5029430064 @default.
- W2953233419 hasBestOaLocation W29532334192 @default.
- W2953233419 hasConcept C14166107 @default.
- W2953233419 hasConcept C142724271 @default.
- W2953233419 hasConcept C153180895 @default.
- W2953233419 hasConcept C154945302 @default.
- W2953233419 hasConcept C2524010 @default.
- W2953233419 hasConcept C2781156865 @default.
- W2953233419 hasConcept C33923547 @default.
- W2953233419 hasConcept C41008148 @default.
- W2953233419 hasConcept C71924100 @default.
- W2953233419 hasConceptScore W2953233419C14166107 @default.
- W2953233419 hasConceptScore W2953233419C142724271 @default.
- W2953233419 hasConceptScore W2953233419C153180895 @default.
- W2953233419 hasConceptScore W2953233419C154945302 @default.
- W2953233419 hasConceptScore W2953233419C2524010 @default.
- W2953233419 hasConceptScore W2953233419C2781156865 @default.
- W2953233419 hasConceptScore W2953233419C33923547 @default.
- W2953233419 hasConceptScore W2953233419C41008148 @default.
- W2953233419 hasConceptScore W2953233419C71924100 @default.
- W2953233419 hasLocation W29532334191 @default.
- W2953233419 hasLocation W29532334192 @default.
- W2953233419 hasOpenAccess W2953233419 @default.
- W2953233419 hasPrimaryLocation W29532334191 @default.
- W2953233419 hasRelatedWork W1978450727 @default.
- W2953233419 hasRelatedWork W2033914206 @default.
- W2953233419 hasRelatedWork W2146076056 @default.
- W2953233419 hasRelatedWork W2163831990 @default.
- W2953233419 hasRelatedWork W2378160586 @default.
- W2953233419 hasRelatedWork W2996038082 @default.
- W2953233419 hasRelatedWork W3003836766 @default.
- W2953233419 hasRelatedWork W3107474891 @default.
- W2953233419 hasRelatedWork W4244943737 @default.
- W2953233419 hasRelatedWork W2289108895 @default.
- W2953233419 isParatext "false" @default.
- W2953233419 isRetracted "false" @default.
- W2953233419 magId "2953233419" @default.
- W2953233419 workType "book-chapter" @default.