Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953244756> ?p ?o ?g. }
- W2953244756 endingPage "63" @default.
- W2953244756 startingPage "35" @default.
- W2953244756 abstract "Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between positive and negative feedback effects provided by relatively fast amplifying currents and slower resonant currents. In 2D neuronal systems, amplifying currents are required to be slave to voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems, additional currents operating at various effective time scales may modulate and annihilate existing resonances and generate antiresonance (minimum amplitude response) and antiphasonance (zero-phase response with phase monotonic properties opposite to phasonance). We use mathematical modeling, numerical simulations and dynamical systems tools to investigate the mechanisms underlying these phenomena in 3D linear models, which are obtained as the linearization of biophysical (conductance-based) models. We characterize the parameter regimes for which the system exhibits the various types of behavior mentioned above in the rather general case in which the underlying 2D system exhibits resonance. We consider two cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a response amplification if the amplifying current is faster than the resonant current, (ii) resonance and phasonance attenuation and annihilation if the amplifying and resonant currents have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current is slower than the resonant current. We investigate the underlying mechanisms by extending the envelope-plane diagram approach developed in previous work (for 2D systems) to three dimensions to include the additional gating variable, and constructing the corresponding envelope curves in these envelope-space diagrams. We find that antiresonance and antiphasonance emerge as the result of an asymptotic boundary layer problem in the frequency domain created by the different balances between the intrinsic time constants of the cell and the input frequency f as it changes. For large enough values of f the envelope curves are quasi-2D and the impedance profile decreases with the input frequency. In contrast, for f ≪ 1 the dynamics are quasi-1D and the impedance profile increases above the limiting value in the other regime. Antiresonance is created because the continuity of the solution requires the impedance profile to connect the portions belonging to the two regimes. If in doing so the phase profile crosses the zero value, then antiphasonance is also generated." @default.
- W2953244756 created "2019-06-27" @default.
- W2953244756 creator A5046627918 @default.
- W2953244756 date "2017-05-31" @default.
- W2953244756 modified "2023-09-26" @default.
- W2953244756 title "Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics" @default.
- W2953244756 cites W1480219974 @default.
- W2953244756 cites W1517008316 @default.
- W2953244756 cites W1525542820 @default.
- W2953244756 cites W1548653509 @default.
- W2953244756 cites W1597876830 @default.
- W2953244756 cites W1918906452 @default.
- W2953244756 cites W1966422754 @default.
- W2953244756 cites W1970510328 @default.
- W2953244756 cites W1977181457 @default.
- W2953244756 cites W1985940938 @default.
- W2953244756 cites W1991074008 @default.
- W2953244756 cites W2012082631 @default.
- W2953244756 cites W2012217824 @default.
- W2953244756 cites W2017855292 @default.
- W2953244756 cites W2023925279 @default.
- W2953244756 cites W2024275179 @default.
- W2953244756 cites W2030253159 @default.
- W2953244756 cites W2043325561 @default.
- W2953244756 cites W2047863847 @default.
- W2953244756 cites W2056833737 @default.
- W2953244756 cites W2058237783 @default.
- W2953244756 cites W2060245582 @default.
- W2953244756 cites W2062633392 @default.
- W2953244756 cites W2081131230 @default.
- W2953244756 cites W2084355543 @default.
- W2953244756 cites W2088358935 @default.
- W2953244756 cites W2091770488 @default.
- W2953244756 cites W2091883322 @default.
- W2953244756 cites W2094328578 @default.
- W2953244756 cites W2095436582 @default.
- W2953244756 cites W2104892692 @default.
- W2953244756 cites W2108184772 @default.
- W2953244756 cites W2120284757 @default.
- W2953244756 cites W2123746357 @default.
- W2953244756 cites W2126007099 @default.
- W2953244756 cites W2127568004 @default.
- W2953244756 cites W2131720818 @default.
- W2953244756 cites W2145180114 @default.
- W2953244756 cites W2145592553 @default.
- W2953244756 cites W2146619218 @default.
- W2953244756 cites W2152982331 @default.
- W2953244756 cites W2156075637 @default.
- W2953244756 cites W2159723961 @default.
- W2953244756 cites W2162445001 @default.
- W2953244756 cites W2163071226 @default.
- W2953244756 cites W2169345222 @default.
- W2953244756 cites W2326772754 @default.
- W2953244756 cites W2343821877 @default.
- W2953244756 cites W2475271757 @default.
- W2953244756 cites W2475765891 @default.
- W2953244756 cites W2516266077 @default.
- W2953244756 cites W2558216909 @default.
- W2953244756 cites W2950487668 @default.
- W2953244756 doi "https://doi.org/10.1007/s10827-017-0646-8" @default.
- W2953244756 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28569367" @default.
- W2953244756 hasPublicationYear "2017" @default.
- W2953244756 type Work @default.
- W2953244756 sameAs 2953244756 @default.
- W2953244756 citedByCount "21" @default.
- W2953244756 countsByYear W29532447562017 @default.
- W2953244756 countsByYear W29532447562018 @default.
- W2953244756 countsByYear W29532447562019 @default.
- W2953244756 countsByYear W29532447562020 @default.
- W2953244756 countsByYear W29532447562021 @default.
- W2953244756 countsByYear W29532447562022 @default.
- W2953244756 countsByYear W29532447562023 @default.
- W2953244756 crossrefType "journal-article" @default.
- W2953244756 hasAuthorship W2953244756A5046627918 @default.
- W2953244756 hasBestOaLocation W29532447562 @default.
- W2953244756 hasConcept C121332964 @default.
- W2953244756 hasConcept C139210041 @default.
- W2953244756 hasConcept C156465305 @default.
- W2953244756 hasConcept C165801399 @default.
- W2953244756 hasConcept C172385210 @default.
- W2953244756 hasConcept C176150650 @default.
- W2953244756 hasConcept C180205008 @default.
- W2953244756 hasConcept C52192207 @default.
- W2953244756 hasConcept C62520636 @default.
- W2953244756 hasConcept C89880566 @default.
- W2953244756 hasConceptScore W2953244756C121332964 @default.
- W2953244756 hasConceptScore W2953244756C139210041 @default.
- W2953244756 hasConceptScore W2953244756C156465305 @default.
- W2953244756 hasConceptScore W2953244756C165801399 @default.
- W2953244756 hasConceptScore W2953244756C172385210 @default.
- W2953244756 hasConceptScore W2953244756C176150650 @default.
- W2953244756 hasConceptScore W2953244756C180205008 @default.
- W2953244756 hasConceptScore W2953244756C52192207 @default.
- W2953244756 hasConceptScore W2953244756C62520636 @default.
- W2953244756 hasConceptScore W2953244756C89880566 @default.
- W2953244756 hasFunder F4320306076 @default.
- W2953244756 hasFunder F4320337380 @default.
- W2953244756 hasIssue "1" @default.