Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953256929> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2953256929 abstract "We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given $g$, we consider, for every $n ge 1$, a random quadrangulation $q_n$ uniformly distributed over the set of all rooted bipartite quadrangulations of genus $g$ with $n$ faces. We view it as a metric space by endowing its set of vertices with the graph distance. We show that, as $n$ tends to infinity, this metric space, with distances rescaled by the factor $n^{-1/4}$, converges in distribution, at least along some subsequence, toward a limiting random metric space. This convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal to 4. Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadrangulations we consider and objects they call well-labeled $g$-trees. An important part of our study consists in determining the scaling limits of the latter." @default.
- W2953256929 created "2019-06-27" @default.
- W2953256929 creator A5018351519 @default.
- W2953256929 date "2010-02-19" @default.
- W2953256929 modified "2023-09-26" @default.
- W2953256929 title "Scaling Limits for Random Quadrangulations of Positive Genus" @default.
- W2953256929 hasPublicationYear "2010" @default.
- W2953256929 type Work @default.
- W2953256929 sameAs 2953256929 @default.
- W2953256929 citedByCount "0" @default.
- W2953256929 crossrefType "posted-content" @default.
- W2953256929 hasAuthorship W2953256929A5018351519 @default.
- W2953256929 hasConcept C114614502 @default.
- W2953256929 hasConcept C118615104 @default.
- W2953256929 hasConcept C132525143 @default.
- W2953256929 hasConcept C134306372 @default.
- W2953256929 hasConcept C137877099 @default.
- W2953256929 hasConcept C138885662 @default.
- W2953256929 hasConcept C141898687 @default.
- W2953256929 hasConcept C18648836 @default.
- W2953256929 hasConcept C194198291 @default.
- W2953256929 hasConcept C197657726 @default.
- W2953256929 hasConcept C198043062 @default.
- W2953256929 hasConcept C202444582 @default.
- W2953256929 hasConcept C2524010 @default.
- W2953256929 hasConcept C2778572836 @default.
- W2953256929 hasConcept C33923547 @default.
- W2953256929 hasConcept C34388435 @default.
- W2953256929 hasConcept C41895202 @default.
- W2953256929 hasConcept C61067352 @default.
- W2953256929 hasConcept C99844830 @default.
- W2953256929 hasConceptScore W2953256929C114614502 @default.
- W2953256929 hasConceptScore W2953256929C118615104 @default.
- W2953256929 hasConceptScore W2953256929C132525143 @default.
- W2953256929 hasConceptScore W2953256929C134306372 @default.
- W2953256929 hasConceptScore W2953256929C137877099 @default.
- W2953256929 hasConceptScore W2953256929C138885662 @default.
- W2953256929 hasConceptScore W2953256929C141898687 @default.
- W2953256929 hasConceptScore W2953256929C18648836 @default.
- W2953256929 hasConceptScore W2953256929C194198291 @default.
- W2953256929 hasConceptScore W2953256929C197657726 @default.
- W2953256929 hasConceptScore W2953256929C198043062 @default.
- W2953256929 hasConceptScore W2953256929C202444582 @default.
- W2953256929 hasConceptScore W2953256929C2524010 @default.
- W2953256929 hasConceptScore W2953256929C2778572836 @default.
- W2953256929 hasConceptScore W2953256929C33923547 @default.
- W2953256929 hasConceptScore W2953256929C34388435 @default.
- W2953256929 hasConceptScore W2953256929C41895202 @default.
- W2953256929 hasConceptScore W2953256929C61067352 @default.
- W2953256929 hasConceptScore W2953256929C99844830 @default.
- W2953256929 hasLocation W29532569291 @default.
- W2953256929 hasOpenAccess W2953256929 @default.
- W2953256929 hasPrimaryLocation W29532569291 @default.
- W2953256929 hasRelatedWork W1611244788 @default.
- W2953256929 hasRelatedWork W1614092324 @default.
- W2953256929 hasRelatedWork W1751794043 @default.
- W2953256929 hasRelatedWork W1989024147 @default.
- W2953256929 hasRelatedWork W2026147416 @default.
- W2953256929 hasRelatedWork W2028203362 @default.
- W2953256929 hasRelatedWork W2065241481 @default.
- W2953256929 hasRelatedWork W2152880689 @default.
- W2953256929 hasRelatedWork W2336060835 @default.
- W2953256929 hasRelatedWork W2531100822 @default.
- W2953256929 hasRelatedWork W2582060497 @default.
- W2953256929 hasRelatedWork W2769519826 @default.
- W2953256929 hasRelatedWork W2913340675 @default.
- W2953256929 hasRelatedWork W2935710788 @default.
- W2953256929 hasRelatedWork W2943576350 @default.
- W2953256929 hasRelatedWork W2951689624 @default.
- W2953256929 hasRelatedWork W2951742264 @default.
- W2953256929 hasRelatedWork W2953214038 @default.
- W2953256929 hasRelatedWork W2968251710 @default.
- W2953256929 hasRelatedWork W3151462659 @default.
- W2953256929 isParatext "false" @default.
- W2953256929 isRetracted "false" @default.
- W2953256929 magId "2953256929" @default.
- W2953256929 workType "article" @default.