Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953257883> ?p ?o ?g. }
- W2953257883 abstract "Background: Hidden Markov models are widely employed by numerous bioinformatics programs used today. Applications range widely from comparative gene prediction to time-series analyses of micro-array data. The parameters of the underlying models need to be adjusted for specific data sets, for example the genome of a particular species, in order to maximize the prediction accuracy. Computationally efficient algorithms for parameter training are thus key to maximizing the usability of a wide range of bioinformatics applications. Results: We introduce two computationally efficient training algorithms, one for Viterbi training and one for stochastic expectation maximization (EM) training, which render the memory requirements independent of the sequence length. Unlike the existing algorithms for Viterbi and stochastic EM training which require a two-step procedure, our two new algorithms require only one step and scan the input sequence in only one direction. We also implement these two new algorithms and the already published linear-memory algorithm for EM training into the hidden Markov model compiler HMM-Converter and examine their respective practical merits for three small example models. Conclusions: Bioinformatics applications employing hidden Markov models can use the two algorithms in order to make Viterbi training and stochastic EM training more computationally efficient. Using these algorithms, parameter training can thus be attempted for more complex models and longer training sequences. The two new algorithms have the added advantage of being easier to implement than the corresponding default algorithms for Viterbi training and stochastic EM training." @default.
- W2953257883 created "2019-06-27" @default.
- W2953257883 creator A5010955589 @default.
- W2953257883 creator A5012564571 @default.
- W2953257883 date "2009-09-03" @default.
- W2953257883 modified "2023-09-27" @default.
- W2953257883 title "Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization EM training and Viterbi training" @default.
- W2953257883 cites W1487554690 @default.
- W2953257883 cites W1487600774 @default.
- W2953257883 cites W1575431606 @default.
- W2953257883 cites W1971341890 @default.
- W2953257883 cites W1974800873 @default.
- W2953257883 cites W1991133427 @default.
- W2953257883 cites W1996700726 @default.
- W2953257883 cites W2009570821 @default.
- W2953257883 cites W2014809563 @default.
- W2953257883 cites W2047405351 @default.
- W2953257883 cites W2049633694 @default.
- W2953257883 cites W2079155847 @default.
- W2953257883 cites W2089092392 @default.
- W2953257883 cites W2093881399 @default.
- W2953257883 cites W2106090237 @default.
- W2953257883 cites W2106274942 @default.
- W2953257883 cites W2111531379 @default.
- W2953257883 cites W2124125906 @default.
- W2953257883 cites W2124838725 @default.
- W2953257883 cites W2128242967 @default.
- W2953257883 cites W2132285838 @default.
- W2953257883 cites W2136102131 @default.
- W2953257883 cites W2136792657 @default.
- W2953257883 cites W2141885858 @default.
- W2953257883 cites W2143423747 @default.
- W2953257883 cites W2145749080 @default.
- W2953257883 cites W2146098979 @default.
- W2953257883 cites W2146974293 @default.
- W2953257883 cites W2149467186 @default.
- W2953257883 cites W2152770371 @default.
- W2953257883 cites W2165654401 @default.
- W2953257883 hasPublicationYear "2009" @default.
- W2953257883 type Work @default.
- W2953257883 sameAs 2953257883 @default.
- W2953257883 citedByCount "0" @default.
- W2953257883 crossrefType "posted-content" @default.
- W2953257883 hasAuthorship W2953257883A5010955589 @default.
- W2953257883 hasAuthorship W2953257883A5012564571 @default.
- W2953257883 hasConcept C105795698 @default.
- W2953257883 hasConcept C113638808 @default.
- W2953257883 hasConcept C11413529 @default.
- W2953257883 hasConcept C119857082 @default.
- W2953257883 hasConcept C121332964 @default.
- W2953257883 hasConcept C130319729 @default.
- W2953257883 hasConcept C153294291 @default.
- W2953257883 hasConcept C154945302 @default.
- W2953257883 hasConcept C157125643 @default.
- W2953257883 hasConcept C163836022 @default.
- W2953257883 hasConcept C182081679 @default.
- W2953257883 hasConcept C193969084 @default.
- W2953257883 hasConcept C196455857 @default.
- W2953257883 hasConcept C196956702 @default.
- W2953257883 hasConcept C23224414 @default.
- W2953257883 hasConcept C2777211547 @default.
- W2953257883 hasConcept C33923547 @default.
- W2953257883 hasConcept C41008148 @default.
- W2953257883 hasConcept C49781872 @default.
- W2953257883 hasConcept C54907487 @default.
- W2953257883 hasConcept C57273362 @default.
- W2953257883 hasConcept C60582962 @default.
- W2953257883 hasConcept C98763669 @default.
- W2953257883 hasConceptScore W2953257883C105795698 @default.
- W2953257883 hasConceptScore W2953257883C113638808 @default.
- W2953257883 hasConceptScore W2953257883C11413529 @default.
- W2953257883 hasConceptScore W2953257883C119857082 @default.
- W2953257883 hasConceptScore W2953257883C121332964 @default.
- W2953257883 hasConceptScore W2953257883C130319729 @default.
- W2953257883 hasConceptScore W2953257883C153294291 @default.
- W2953257883 hasConceptScore W2953257883C154945302 @default.
- W2953257883 hasConceptScore W2953257883C157125643 @default.
- W2953257883 hasConceptScore W2953257883C163836022 @default.
- W2953257883 hasConceptScore W2953257883C182081679 @default.
- W2953257883 hasConceptScore W2953257883C193969084 @default.
- W2953257883 hasConceptScore W2953257883C196455857 @default.
- W2953257883 hasConceptScore W2953257883C196956702 @default.
- W2953257883 hasConceptScore W2953257883C23224414 @default.
- W2953257883 hasConceptScore W2953257883C2777211547 @default.
- W2953257883 hasConceptScore W2953257883C33923547 @default.
- W2953257883 hasConceptScore W2953257883C41008148 @default.
- W2953257883 hasConceptScore W2953257883C49781872 @default.
- W2953257883 hasConceptScore W2953257883C54907487 @default.
- W2953257883 hasConceptScore W2953257883C57273362 @default.
- W2953257883 hasConceptScore W2953257883C60582962 @default.
- W2953257883 hasConceptScore W2953257883C98763669 @default.
- W2953257883 hasLocation W29532578831 @default.
- W2953257883 hasOpenAccess W2953257883 @default.
- W2953257883 hasPrimaryLocation W29532578831 @default.
- W2953257883 hasRelatedWork W1528056001 @default.
- W2953257883 hasRelatedWork W1816861169 @default.
- W2953257883 hasRelatedWork W1998238819 @default.
- W2953257883 hasRelatedWork W2041882022 @default.
- W2953257883 hasRelatedWork W2136792657 @default.
- W2953257883 hasRelatedWork W2144837664 @default.