Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953271441> ?p ?o ?g. }
- W2953271441 abstract "We propose a novel deep metric learning method by revisiting the learning to rank approach. Our method, named FastAP, optimizes the rank-based Average Precision measure, using an approximation derived from distance quantization. FastAP has a low complexity compared to existing methods, and is tailored for stochastic gradient descent. To fully exploit the benefits of the ranking formulation, we also propose a new minibatch sampling scheme, as well as a simple heuristic to enable large-batch training. On three few-shot image retrieval datasets, FastAP consistently outperforms competing methods, which often involve complex optimization heuristics or costly model ensembles." @default.
- W2953271441 created "2019-06-27" @default.
- W2953271441 creator A5009250416 @default.
- W2953271441 creator A5042663603 @default.
- W2953271441 creator A5049134079 @default.
- W2953271441 creator A5079036364 @default.
- W2953271441 creator A5091179204 @default.
- W2953271441 date "2019-06-01" @default.
- W2953271441 modified "2023-10-16" @default.
- W2953271441 title "Deep Metric Learning to Rank" @default.
- W2953271441 cites W1969118846 @default.
- W2953271441 cites W2051928158 @default.
- W2953271441 cites W2059001985 @default.
- W2953271441 cites W2108862644 @default.
- W2953271441 cites W2127176025 @default.
- W2953271441 cites W2138621090 @default.
- W2953271441 cites W2141362318 @default.
- W2953271441 cites W2142120379 @default.
- W2953271441 cites W2149427297 @default.
- W2953271441 cites W2194775991 @default.
- W2953271441 cites W2470322391 @default.
- W2953271441 cites W2471768434 @default.
- W2953271441 cites W2544587078 @default.
- W2953271441 cites W2549858646 @default.
- W2953271441 cites W2605102252 @default.
- W2953271441 cites W2613997951 @default.
- W2953271441 cites W2885563408 @default.
- W2953271441 cites W2895115565 @default.
- W2953271441 cites W2963026686 @default.
- W2953271441 cites W2963284197 @default.
- W2953271441 cites W2963305974 @default.
- W2953271441 cites W2963350250 @default.
- W2953271441 cites W2963744743 @default.
- W2953271441 cites W2964049460 @default.
- W2953271441 cites W3099206234 @default.
- W2953271441 cites W4210880854 @default.
- W2953271441 cites W4246413330 @default.
- W2953271441 doi "https://doi.org/10.1109/cvpr.2019.00196" @default.
- W2953271441 hasPublicationYear "2019" @default.
- W2953271441 type Work @default.
- W2953271441 sameAs 2953271441 @default.
- W2953271441 citedByCount "168" @default.
- W2953271441 countsByYear W29532714412012 @default.
- W2953271441 countsByYear W29532714412018 @default.
- W2953271441 countsByYear W29532714412019 @default.
- W2953271441 countsByYear W29532714412020 @default.
- W2953271441 countsByYear W29532714412021 @default.
- W2953271441 countsByYear W29532714412022 @default.
- W2953271441 countsByYear W29532714412023 @default.
- W2953271441 crossrefType "proceedings-article" @default.
- W2953271441 hasAuthorship W2953271441A5009250416 @default.
- W2953271441 hasAuthorship W2953271441A5042663603 @default.
- W2953271441 hasAuthorship W2953271441A5049134079 @default.
- W2953271441 hasAuthorship W2953271441A5079036364 @default.
- W2953271441 hasAuthorship W2953271441A5091179204 @default.
- W2953271441 hasConcept C105795698 @default.
- W2953271441 hasConcept C108583219 @default.
- W2953271441 hasConcept C111919701 @default.
- W2953271441 hasConcept C11413529 @default.
- W2953271441 hasConcept C114614502 @default.
- W2953271441 hasConcept C119857082 @default.
- W2953271441 hasConcept C124101348 @default.
- W2953271441 hasConcept C127705205 @default.
- W2953271441 hasConcept C134306372 @default.
- W2953271441 hasConcept C153258448 @default.
- W2953271441 hasConcept C154945302 @default.
- W2953271441 hasConcept C162324750 @default.
- W2953271441 hasConcept C164226766 @default.
- W2953271441 hasConcept C165064840 @default.
- W2953271441 hasConcept C165696696 @default.
- W2953271441 hasConcept C173801870 @default.
- W2953271441 hasConcept C176217482 @default.
- W2953271441 hasConcept C189430467 @default.
- W2953271441 hasConcept C206688291 @default.
- W2953271441 hasConcept C21547014 @default.
- W2953271441 hasConcept C25023664 @default.
- W2953271441 hasConcept C28855332 @default.
- W2953271441 hasConcept C33923547 @default.
- W2953271441 hasConcept C38652104 @default.
- W2953271441 hasConcept C41008148 @default.
- W2953271441 hasConcept C50644808 @default.
- W2953271441 hasConcept C86037889 @default.
- W2953271441 hasConcept C90199385 @default.
- W2953271441 hasConceptScore W2953271441C105795698 @default.
- W2953271441 hasConceptScore W2953271441C108583219 @default.
- W2953271441 hasConceptScore W2953271441C111919701 @default.
- W2953271441 hasConceptScore W2953271441C11413529 @default.
- W2953271441 hasConceptScore W2953271441C114614502 @default.
- W2953271441 hasConceptScore W2953271441C119857082 @default.
- W2953271441 hasConceptScore W2953271441C124101348 @default.
- W2953271441 hasConceptScore W2953271441C127705205 @default.
- W2953271441 hasConceptScore W2953271441C134306372 @default.
- W2953271441 hasConceptScore W2953271441C153258448 @default.
- W2953271441 hasConceptScore W2953271441C154945302 @default.
- W2953271441 hasConceptScore W2953271441C162324750 @default.
- W2953271441 hasConceptScore W2953271441C164226766 @default.
- W2953271441 hasConceptScore W2953271441C165064840 @default.
- W2953271441 hasConceptScore W2953271441C165696696 @default.
- W2953271441 hasConceptScore W2953271441C173801870 @default.
- W2953271441 hasConceptScore W2953271441C176217482 @default.