Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953272110> ?p ?o ?g. }
- W2953272110 abstract "Multi-marker approaches have received a lot of attention recently in genome wide association studies and can enhance power to detect new associations under certain conditions. Gene-, gene-set- and pathway-based association tests are increasingly being viewed as useful supplements to the more widely used single marker association analysis which have successfully uncovered numerous disease variants. A major drawback of single-marker based methods is that they do not look at the joint effects of multiple genetic variants which individually may have weak or moderate signals. Here, we describe novel tests for multi-marker association analyses that are based on phenotype predictions obtained from machine learning algorithms. Instead of assuming a linear or logistic regression model, we propose the use of ensembles of diverse machine learning algorithms for prediction. We show that phenotype predictions obtained from ensemble learning algorithms provide a new framework for multi-marker association analysis. They can be used for constructing tests for the joint association of multiple variants, adjusting for covariates and testing for the presence of interactions. To demonstrate the power and utility of this new approach, we first apply our method to simulated SNP datasets. We show that the proposed method has the correct Type-1 error rates and can be considerably more powerful than alternative approaches in some situations. Then, we apply our method to previously studied asthma-related genes in 2 independent asthma cohorts to conduct association tests." @default.
- W2953272110 created "2019-06-27" @default.
- W2953272110 creator A5035042342 @default.
- W2953272110 creator A5059169839 @default.
- W2953272110 creator A5059264990 @default.
- W2953272110 creator A5085720726 @default.
- W2953272110 creator A5087470378 @default.
- W2953272110 date "2015-11-30" @default.
- W2953272110 modified "2023-09-23" @default.
- W2953272110 title "Powerful Tests for Multi-Marker Association Analysis Using Ensemble Learning" @default.
- W2953272110 cites W1747499909 @default.
- W2953272110 cites W1963934696 @default.
- W2953272110 cites W1973874622 @default.
- W2953272110 cites W2003283154 @default.
- W2953272110 cites W2041953582 @default.
- W2953272110 cites W2042433654 @default.
- W2953272110 cites W2043601400 @default.
- W2953272110 cites W2065397672 @default.
- W2953272110 cites W2084974619 @default.
- W2953272110 cites W2087936498 @default.
- W2953272110 cites W2097137621 @default.
- W2953272110 cites W2099107563 @default.
- W2953272110 cites W2139768049 @default.
- W2953272110 cites W2159556553 @default.
- W2953272110 cites W2163924952 @default.
- W2953272110 cites W2163953557 @default.
- W2953272110 cites W2165118109 @default.
- W2953272110 cites W2165277651 @default.
- W2953272110 cites W2911964244 @default.
- W2953272110 cites W4239510810 @default.
- W2953272110 cites W4240294902 @default.
- W2953272110 doi "https://doi.org/10.1371/journal.pone.0143489" @default.
- W2953272110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4664402" @default.
- W2953272110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26619286" @default.
- W2953272110 hasPublicationYear "2015" @default.
- W2953272110 type Work @default.
- W2953272110 sameAs 2953272110 @default.
- W2953272110 citedByCount "0" @default.
- W2953272110 crossrefType "journal-article" @default.
- W2953272110 hasAuthorship W2953272110A5035042342 @default.
- W2953272110 hasAuthorship W2953272110A5059169839 @default.
- W2953272110 hasAuthorship W2953272110A5059264990 @default.
- W2953272110 hasAuthorship W2953272110A5085720726 @default.
- W2953272110 hasAuthorship W2953272110A5087470378 @default.
- W2953272110 hasBestOaLocation W29532721101 @default.
- W2953272110 hasConcept C104317684 @default.
- W2953272110 hasConcept C105795698 @default.
- W2953272110 hasConcept C106208931 @default.
- W2953272110 hasConcept C111472728 @default.
- W2953272110 hasConcept C119043178 @default.
- W2953272110 hasConcept C119857082 @default.
- W2953272110 hasConcept C135763542 @default.
- W2953272110 hasConcept C138885662 @default.
- W2953272110 hasConcept C142853389 @default.
- W2953272110 hasConcept C151956035 @default.
- W2953272110 hasConcept C153209595 @default.
- W2953272110 hasConcept C154945302 @default.
- W2953272110 hasConcept C177264268 @default.
- W2953272110 hasConcept C183905921 @default.
- W2953272110 hasConcept C186413461 @default.
- W2953272110 hasConcept C199360897 @default.
- W2953272110 hasConcept C33923547 @default.
- W2953272110 hasConcept C41008148 @default.
- W2953272110 hasConcept C45942800 @default.
- W2953272110 hasConcept C54355233 @default.
- W2953272110 hasConcept C70721500 @default.
- W2953272110 hasConcept C86803240 @default.
- W2953272110 hasConcept C96608239 @default.
- W2953272110 hasConceptScore W2953272110C104317684 @default.
- W2953272110 hasConceptScore W2953272110C105795698 @default.
- W2953272110 hasConceptScore W2953272110C106208931 @default.
- W2953272110 hasConceptScore W2953272110C111472728 @default.
- W2953272110 hasConceptScore W2953272110C119043178 @default.
- W2953272110 hasConceptScore W2953272110C119857082 @default.
- W2953272110 hasConceptScore W2953272110C135763542 @default.
- W2953272110 hasConceptScore W2953272110C138885662 @default.
- W2953272110 hasConceptScore W2953272110C142853389 @default.
- W2953272110 hasConceptScore W2953272110C151956035 @default.
- W2953272110 hasConceptScore W2953272110C153209595 @default.
- W2953272110 hasConceptScore W2953272110C154945302 @default.
- W2953272110 hasConceptScore W2953272110C177264268 @default.
- W2953272110 hasConceptScore W2953272110C183905921 @default.
- W2953272110 hasConceptScore W2953272110C186413461 @default.
- W2953272110 hasConceptScore W2953272110C199360897 @default.
- W2953272110 hasConceptScore W2953272110C33923547 @default.
- W2953272110 hasConceptScore W2953272110C41008148 @default.
- W2953272110 hasConceptScore W2953272110C45942800 @default.
- W2953272110 hasConceptScore W2953272110C54355233 @default.
- W2953272110 hasConceptScore W2953272110C70721500 @default.
- W2953272110 hasConceptScore W2953272110C86803240 @default.
- W2953272110 hasConceptScore W2953272110C96608239 @default.
- W2953272110 hasLocation W29532721101 @default.
- W2953272110 hasLocation W29532721102 @default.
- W2953272110 hasLocation W29532721103 @default.
- W2953272110 hasLocation W29532721104 @default.
- W2953272110 hasLocation W29532721105 @default.
- W2953272110 hasOpenAccess W2953272110 @default.
- W2953272110 hasPrimaryLocation W29532721101 @default.
- W2953272110 hasRelatedWork W1502118703 @default.
- W2953272110 hasRelatedWork W1514774041 @default.