Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953280096> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2953280096 abstract "Most existing text summarization datasets are compiled from the news domain, where summaries have a flattened discourse structure. In such datasets, summary-worthy content often appears in the beginning of input articles. Moreover, large segments from input articles are present verbatim in their respective summaries. These issues impede the learning and evaluation of systems that can understand an article's global content structure as well as produce abstractive summaries with high compression ratio. In this work, we present a novel dataset, BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Compared to existing summarization datasets, BIGPATENT has the following properties: i) summaries contain a richer discourse structure with more recurring entities, ii) salient content is evenly distributed in the input, and iii) lesser and shorter extractive fragments are present in the summaries. Finally, we train and evaluate baselines and popular learning models on BIGPATENT to shed light on new challenges and motivate future directions for summarization research." @default.
- W2953280096 created "2019-06-27" @default.
- W2953280096 creator A5020793872 @default.
- W2953280096 creator A5029484872 @default.
- W2953280096 creator A5032447166 @default.
- W2953280096 date "2019-01-01" @default.
- W2953280096 modified "2023-10-13" @default.
- W2953280096 title "BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization" @default.
- W2953280096 cites W100656083 @default.
- W2953280096 cites W1525595230 @default.
- W2953280096 cites W1544827683 @default.
- W2953280096 cites W1789052466 @default.
- W2953280096 cites W1975579663 @default.
- W2953280096 cites W2070016268 @default.
- W2953280096 cites W2118370253 @default.
- W2953280096 cites W2124741472 @default.
- W2953280096 cites W2130942839 @default.
- W2953280096 cites W2140676672 @default.
- W2953280096 cites W2143017621 @default.
- W2953280096 cites W2146502635 @default.
- W2953280096 cites W2260901818 @default.
- W2953280096 cites W2293778248 @default.
- W2953280096 cites W2591784896 @default.
- W2953280096 cites W2606974598 @default.
- W2953280096 cites W2612675303 @default.
- W2953280096 cites W2741375528 @default.
- W2953280096 cites W2888482885 @default.
- W2953280096 cites W2889518897 @default.
- W2953280096 cites W2897802198 @default.
- W2953280096 cites W2962849707 @default.
- W2953280096 cites W2962965405 @default.
- W2953280096 cites W2962985882 @default.
- W2953280096 cites W2963676814 @default.
- W2953280096 cites W2963926728 @default.
- W2953280096 cites W2963929190 @default.
- W2953280096 cites W2964308564 @default.
- W2953280096 cites W3101913037 @default.
- W2953280096 cites W3158986179 @default.
- W2953280096 doi "https://doi.org/10.18653/v1/p19-1212" @default.
- W2953280096 hasPublicationYear "2019" @default.
- W2953280096 type Work @default.
- W2953280096 sameAs 2953280096 @default.
- W2953280096 citedByCount "84" @default.
- W2953280096 countsByYear W29532800962018 @default.
- W2953280096 countsByYear W29532800962019 @default.
- W2953280096 countsByYear W29532800962020 @default.
- W2953280096 countsByYear W29532800962021 @default.
- W2953280096 countsByYear W29532800962022 @default.
- W2953280096 countsByYear W29532800962023 @default.
- W2953280096 crossrefType "proceedings-article" @default.
- W2953280096 hasAuthorship W2953280096A5020793872 @default.
- W2953280096 hasAuthorship W2953280096A5029484872 @default.
- W2953280096 hasAuthorship W2953280096A5032447166 @default.
- W2953280096 hasBestOaLocation W29532800961 @default.
- W2953280096 hasConcept C154945302 @default.
- W2953280096 hasConcept C170858558 @default.
- W2953280096 hasConcept C204321447 @default.
- W2953280096 hasConcept C205649164 @default.
- W2953280096 hasConcept C23123220 @default.
- W2953280096 hasConcept C2778755073 @default.
- W2953280096 hasConcept C41008148 @default.
- W2953280096 hasConcept C58640448 @default.
- W2953280096 hasConceptScore W2953280096C154945302 @default.
- W2953280096 hasConceptScore W2953280096C170858558 @default.
- W2953280096 hasConceptScore W2953280096C204321447 @default.
- W2953280096 hasConceptScore W2953280096C205649164 @default.
- W2953280096 hasConceptScore W2953280096C23123220 @default.
- W2953280096 hasConceptScore W2953280096C2778755073 @default.
- W2953280096 hasConceptScore W2953280096C41008148 @default.
- W2953280096 hasConceptScore W2953280096C58640448 @default.
- W2953280096 hasLocation W29532800961 @default.
- W2953280096 hasLocation W29532800962 @default.
- W2953280096 hasOpenAccess W2953280096 @default.
- W2953280096 hasPrimaryLocation W29532800961 @default.
- W2953280096 hasRelatedWork W132250100 @default.
- W2953280096 hasRelatedWork W1539478205 @default.
- W2953280096 hasRelatedWork W2093597205 @default.
- W2953280096 hasRelatedWork W2146184373 @default.
- W2953280096 hasRelatedWork W2389846579 @default.
- W2953280096 hasRelatedWork W2392495745 @default.
- W2953280096 hasRelatedWork W2472885054 @default.
- W2953280096 hasRelatedWork W2747680751 @default.
- W2953280096 hasRelatedWork W2981651290 @default.
- W2953280096 hasRelatedWork W3014410397 @default.
- W2953280096 isParatext "false" @default.
- W2953280096 isRetracted "false" @default.
- W2953280096 magId "2953280096" @default.
- W2953280096 workType "article" @default.