Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953328427> ?p ?o ?g. }
- W2953328427 endingPage "e0192829" @default.
- W2953328427 startingPage "e0192829" @default.
- W2953328427 abstract "Many automatic classifiers were introduced to aid inference of phenotypical effects of uncategorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical applications. Lately, several meta-estimators have been proposed that combine different predictors, such as PolyPhen and SIFT, to integrate more information in a single score. Although many advances have been made in feature design and machine learning algorithms used, the shortage of high-quality reference data along with the bias towards intensively studied in vitro models call for improved generalisation ability in order to further increase classification accuracy and handle records with insufficient data. Since a meta-estimator basically combines different scoring systems with highly complicated nonlinear relationships, we investigated how deep learning (supervised and unsupervised), which is particularly efficient at discovering hierarchies of features, can improve classification performance. While it is believed that one should only use deep learning for high-dimensional input spaces and other models (logistic regression, support vector machines, Bayesian classifiers, etc) for simpler inputs, we still believe that the ability of neural networks to discover intricate structure in highly heterogenous datasets can aid a meta-estimator. We compare the performance with various popular predictors, many of which are recommended by the American College of Medical Genetics and Genomics (ACMG), as well as available deep learning-based predictors. Thanks to hardware acceleration we were able to use a computationally expensive genetic algorithm to stochastically optimise hyper-parameters over many generations. Overfitting was hindered by noise injection and dropout, limiting coadaptation of hidden units. Although we stress that this work was not conceived as a tool comparison, but rather an exploration of the possibilities of deep learning application in ensemble scores, our results show that even relatively simple modern neural networks can significantly improve both prediction accuracy and coverage. We provide open-access to our finest model via the web-site: http://score.generesearch.ru/services/badmut/." @default.
- W2953328427 created "2019-06-27" @default.
- W2953328427 creator A5021582923 @default.
- W2953328427 creator A5028518483 @default.
- W2953328427 creator A5052562207 @default.
- W2953328427 creator A5091169485 @default.
- W2953328427 date "2018-03-14" @default.
- W2953328427 modified "2023-09-23" @default.
- W2953328427 title "Generalising better: Applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies" @default.
- W2953328427 cites W1490161904 @default.
- W2953328427 cites W1987507232 @default.
- W2953328427 cites W2011582941 @default.
- W2953328427 cites W2023350260 @default.
- W2953328427 cites W2031956308 @default.
- W2953328427 cites W2038473742 @default.
- W2953328427 cites W2051441176 @default.
- W2953328427 cites W2059145105 @default.
- W2953328427 cites W2063714349 @default.
- W2953328427 cites W2069337540 @default.
- W2953328427 cites W2076357933 @default.
- W2953328427 cites W2086072858 @default.
- W2953328427 cites W2087588809 @default.
- W2953328427 cites W2089335658 @default.
- W2953328427 cites W2098425296 @default.
- W2953328427 cites W2099564671 @default.
- W2953328427 cites W2101412130 @default.
- W2953328427 cites W2106578986 @default.
- W2953328427 cites W2107420626 @default.
- W2953328427 cites W2111326065 @default.
- W2953328427 cites W2114029728 @default.
- W2953328427 cites W2119412782 @default.
- W2953328427 cites W2127981150 @default.
- W2953328427 cites W2129952088 @default.
- W2953328427 cites W2139563991 @default.
- W2953328427 cites W2143238378 @default.
- W2953328427 cites W2145187337 @default.
- W2953328427 cites W2145922766 @default.
- W2953328427 cites W2160995259 @default.
- W2953328427 cites W2161978970 @default.
- W2953328427 cites W2167852161 @default.
- W2953328427 cites W2169243280 @default.
- W2953328427 cites W2225726427 @default.
- W2953328427 doi "https://doi.org/10.1371/journal.pone.0192829" @default.
- W2953328427 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5851551" @default.
- W2953328427 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29538399" @default.
- W2953328427 hasPublicationYear "2018" @default.
- W2953328427 type Work @default.
- W2953328427 sameAs 2953328427 @default.
- W2953328427 citedByCount "12" @default.
- W2953328427 countsByYear W29533284272018 @default.
- W2953328427 countsByYear W29533284272019 @default.
- W2953328427 countsByYear W29533284272020 @default.
- W2953328427 countsByYear W29533284272021 @default.
- W2953328427 countsByYear W29533284272022 @default.
- W2953328427 crossrefType "journal-article" @default.
- W2953328427 hasAuthorship W2953328427A5021582923 @default.
- W2953328427 hasAuthorship W2953328427A5028518483 @default.
- W2953328427 hasAuthorship W2953328427A5052562207 @default.
- W2953328427 hasAuthorship W2953328427A5091169485 @default.
- W2953328427 hasBestOaLocation W29533284271 @default.
- W2953328427 hasConcept C105795698 @default.
- W2953328427 hasConcept C108583219 @default.
- W2953328427 hasConcept C119857082 @default.
- W2953328427 hasConcept C12267149 @default.
- W2953328427 hasConcept C136389625 @default.
- W2953328427 hasConcept C154945302 @default.
- W2953328427 hasConcept C185429906 @default.
- W2953328427 hasConcept C22019652 @default.
- W2953328427 hasConcept C2776145597 @default.
- W2953328427 hasConcept C2776214188 @default.
- W2953328427 hasConcept C33923547 @default.
- W2953328427 hasConcept C41008148 @default.
- W2953328427 hasConcept C50644808 @default.
- W2953328427 hasConceptScore W2953328427C105795698 @default.
- W2953328427 hasConceptScore W2953328427C108583219 @default.
- W2953328427 hasConceptScore W2953328427C119857082 @default.
- W2953328427 hasConceptScore W2953328427C12267149 @default.
- W2953328427 hasConceptScore W2953328427C136389625 @default.
- W2953328427 hasConceptScore W2953328427C154945302 @default.
- W2953328427 hasConceptScore W2953328427C185429906 @default.
- W2953328427 hasConceptScore W2953328427C22019652 @default.
- W2953328427 hasConceptScore W2953328427C2776145597 @default.
- W2953328427 hasConceptScore W2953328427C2776214188 @default.
- W2953328427 hasConceptScore W2953328427C33923547 @default.
- W2953328427 hasConceptScore W2953328427C41008148 @default.
- W2953328427 hasConceptScore W2953328427C50644808 @default.
- W2953328427 hasFunder F4320324099 @default.
- W2953328427 hasIssue "3" @default.
- W2953328427 hasLocation W29533284271 @default.
- W2953328427 hasLocation W29533284272 @default.
- W2953328427 hasLocation W29533284273 @default.
- W2953328427 hasLocation W29533284274 @default.
- W2953328427 hasLocation W29533284275 @default.
- W2953328427 hasLocation W29533284276 @default.
- W2953328427 hasOpenAccess W2953328427 @default.
- W2953328427 hasPrimaryLocation W29533284271 @default.
- W2953328427 hasRelatedWork W1996541855 @default.
- W2953328427 hasRelatedWork W2555500570 @default.